ARI| Research Note 96-58

The Subgoal Structure as a Cognitive Control
Mechanism in a Human-Computer
Interaction Framework

Hee Sen Jong
University of Michigan

Research and Advanced Concepts Office
Michael Drillings, Acting Director

March 1996

19960815 14/

United States Army
Research Institute for the Behavioral and Social Sciences

Approved for public release; distribution is unlimited.
DTIC QUALITY INSPECTED 1

U.S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency Under the Jurisdiction
of the Deputy Chief of Staff for Personnel

EDGAR M. JOHNSON
Director

Research accomplished under contract
for the Department of the Army

University of Michigan

NOTICES

DISTRIBUTION: This report has been cleared for release to the Defense Technical Information
Center (DTIC) to comply with regulatory requirements. It has been given no primary distribution
other than to DTIC and will be available only through DTIC or the National Technical Information
Service (NTIS).

FINAL DISPOSITION: This report may be destroyed when it is no longer needed. Please do not
return it to the U.S. Army Research Institute for the Behavioral and Social Sciences.

NOTE: The views, opinions, and findings in this report are those of the author(s) and should not
be construed as an official Department of the Army position, policy, or decision, unless so
designated by other authorized documents.

REPORT DOCUMENTATION PAGE

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED (from. . . to)
1996, March Interim ‘ December 1988-December 1993
4. TITLE AND SUBTITLE 5a. CONTRACT OR GRANT NUMBER
MDA903-89-K-0025
The Subgoal Structure as a Cognitive Control Mechanism in a 5b PROGRAM ELEMENT NUMBER
Human-Computer Interaction Framework 0601102A
6. AUTHOR(S) 5¢c. PROJECT NUMBER
B74F
Hee Sen Jong (University of Michigan) 5d. TASK NUMBER
1901
S5e. WORK UNIT NUMBER
. C19
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
University of Michigan
Division of Research and Development
475 East Jefferson, Room 1318
Ann Arbor, MI 48109-1248
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. MONITOR ACRONYM
U.S. Army Research Institute for the Behavioral and Social Sciences ARI
ATTN: PERI-BR
5001 Eisenhoxj;er Avenue . 11. MONITOR REPORT NUMBER
Al i 22333-5600
exandria, V Research Note 96-58

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
COR: Michael Drillings

14. ABSTRACT (Maximum 200 words).

Human-Computer Interaction (HCT) research has gained prominence due to the need to make computers easier to learn and use. This
research (1) develops an HCI framework to structure and review HCI models, (2) develops a subgoal theory that investigates some
pieces missing from current models, and (3) tests the subgoal theory.

15. SUBJECT TERMS
Human-Computer Interaction Subgoal theory Task Formulas

 SECURITY CLASSIFICATION OF 1. LIMITATION OF | 20. NUMBER | 21. RESPONSIBLE PERSON

ABSTRACT OF PAGES (Name and Telephone Number)

16. REPORT
Unclassified

17. ABSTRACT
Unclassified

18. THIS PAGE
Unclassified

Unlimited 205

ACKNOWLEDGEMENTS

[am most grateful to Professor Judith Olson, who not only helped shape this
dissertation, but also helped shape my research interest and skill. Her support, care,
encouragement, stimulating insights, and generosity with her time have greatly enriched
my graduate studies experience.

I would like to thank my committee members for making the dissertation research
challenging yet fun. Professor Gary Olson, thank you for helping me to be precise in
stating the theories. Professor Marlys Lipe, thank you for taking much time and care to
help polish the data analyses and the presentation in this dissertation. Professor Jeffrey
Kottemann, thank you for providing perspectives from outside the Human-Computer
Interaction field.

I wish also to express my gratitude to the National University of Singapore (NUS)
and to Professor Judith Olson for the financial support for my graduate studies. This |
dissertation is also supported in part through a grant from the Army Research Insttute
(026147) to Judith Olson. I also like to thank Professor Yuen Chung Kwong, Head of the
Department of Information Systems and Computer Science at NUS, for his

encouragement over the years.

Finally, this dissertation can never be completed without the loving support and
prayers from friends, family members, and my wife, Cher Leng. I thank my fellowship
group for providing prayer and spiritual support. I thank my mum for her sacrificial love
and daily prayer. I thank God for blessing me with Cher Leng, whose love, prayer, and

inspiration have made everything seems so worthwhile.

i1

TABLE OF CONTENTS

DEDICATION ..ot eeeeeveeeaeveese st e et sae e s ea s ba e st s st bR sE SR eSS E S b St bbb sttt ii
ACKNOWLEDGMENTSooeeeeercer ettt sscscs s sassss e st st sh st s iii
LIST OF TABLES ...t etetesseseetesessensss e s et st sasssasa s assss st sassassn sassssas sasnsssssasacs vi
LIST OF FIGURES ... oeeeeeeeeeitestesreseesceseesitesnassbasessssasssssasasassssees tebsas sebssstabasssnsseasanas vii
LIST OF APPENDICESooviooireeereetnseiiestessmssesssestsssscainms s sssss sabessss anasassusssasssnses ix
CHAPTER
1 THE RESEARCH PROBLEM
1.1 Background and MOUVAHON ...cccceueritiinninmietimsiss s issssss s ss st sssasssnsessinss 1
1.2 Research Objectives and APProachcecveioiiiinncsinnsniiiiiisceesenens 8
1.3 Outline Of the CHAPLETS ...coceccreiinrininrenntnieescstetintiii i ssssess st st asssn st sene 10
2 A HUMAN-COMPUTER INTERACTION COGNITIVE MODELING
FRAMEWORK
2.1 The HCI FTAMEWOTKvevereeceeescrneestsnmneressssssssssescussiasssenasssssessatsusasssssusassssaes 12
2.2 Current HCI Cognitive Models and The HCI Frameworkcooocvvvecuccniinnsens 28
2.3 The HCI Framework and the Human Behavior Literaturecoccoceeeisuesscsincnss 44
2.4 The Gap in the HCI Modeling LUETaturecooeueecirinsmsmsmnmsmninmsnssiiecncecnns 46
2.5 The Roles of Subgoals in the HCI Framework.........cooemunisccusiiissesisnninsnssinnns 47
2.6 Proposed Theory and Empirical Validationcceeenceimnmiinsninnsncnescninse 54
3 THE FORMULA EDITOR EXPERIMENT
3.1 The Formula Entry Task Using a Linear EdItOrcconeroniinimiiiniinsesccnncs 58
3.2 The Structure and Meaning of FOrmulasc.ccoiviimenicininiiinnnisiece 60
3.3 The Cognitive Process of the Formula Entry TasK.....coccocesimsririnniinissisennens 62
3.4 ThE PIlOt STUAY ..cvovereurenecscrierererersnssassessissssessinstsiassissss s s s sttt cecnssnee 66
3.5 Results of the Pilot STUAY ..cccoeivmmiiinmienisineescstniinninsissesss sttt sncnsase 70
3.6 A Cognitve Process Model for Keying Formulas Linearly ...cccouvvesrenruesenieanene 77

iv

37
3.8
3.9
3.10
3.11
3.12
3.13

4.1
42
4.3
4.4
45
4.6
4.7
4.8

The Semantic FOrmula EditOr......covereereemmrersemiiinniniiie st 81

A Cognitive Process Model for Using the Semantic EdItOrocvcviirienerenieens 86
A Study to Compare the Cognitive Process when Using the Two Editors 89
THE HYPONESES evvcvneeevrmmmrmseiissssssesssesssssssssssss s s sss sttt 94
The Resuits of the Formula Editor EXperimentccoceeeeisiiiiiinininicesessanes 97
DiSCUSSION Of RESULLS .uvvierverriererraesseeesriessmsnesasesassinsastesseutessssussusssasassaesssssess 103
CONCIUSION +.ovveaeereereeeneseveeserseenessesssseeseenersssseranssease sbesssatest st sbetsubsansusssnsentianes 105

THE LOTUS MENU EXPERIMENT

The Spreadsheet Modification Taskscommeresseusesssussiissmsssusensissenssnssssnsenase 107
The Structure of the LOtus MENUcooviiiiieieencentinimmiencsssiiinianiissscsssssnnes 108
The Instructions fOr the TaSKS ...cceevereeriiimieneesiinitssstisstssiss e cnnees 115
The Experimental DEtailscooccecoruriiiiimsmnsismcnsimssssssscsssssnssnssssssssaencees 118
THE HYPOIESES ..cevvvvriunraerarsrssssisesssasemnsinsssssssssesinssnssassmsstssss s s sssseases 123
The Results of the Lotus Menu Traversal EXperiment......coccoceeeeininveesssaenanes 128
DiSCUSSION OF RESULILS ..eeveeerreieveiraerseessesenesssessssnssssessunsssasssasssssantsiusessssasassness 139
CONCIUSION wvonvveveeereveerneeneseeeseessrssasesnssensssesssasnassssssssensasasssassassasssnsansastsssonessss 140

GENERAL DISCUSSION AND A DESIGN METHOD

5.1 Contributions of This RESEAICH ..ccccvviiimimirmeestniisiniieses it cnenees 141
5.2 Implications of this RESEATCH ...ttt 144
5.3 Possible FULUIe RESEATCH c..cvireeerneeriiiesieriesasssnssnnesssssss st 146
5.4 A Design Method for Creating Good INterfaces.......ooonrumusrnrcisescucusesnssuseess 149
APPENDICES ... ooooeeeeeeeeeeeeeeeteesessesseasessasssasosessensassasasentasssrmassassassassurssstanassasssassassnse 155
BIBLIOGRAPHY o.oooooeoeeeeeeeeeeeeteeeesesteseese st ssse e ss e s ssesst sapeasasssssnsuusn s ssantanssnsnsans 183

3.1

32

33

4.1

4.2
43

4.4

4.5

4.6

LIST OF TABLES

The Hypotheses for the Effects of the Independent Variablesccceuneeennas

The Positions and Number of Errors for the Semantic EitOr.....cooovrveeeeenceecas

The Summary of ANOVA of the Effects of the Independent Variables........
Hypotheses for the Individual Tasks in the Lotus Experiment........ccccevceeenees

Distribution of Subjects for the Lotus EXPEriment........cecsusuimsisrssanassanes

The Effects of Instruction and Menu on the Number of Errors,
the Number of Tasks with Backtracking and the Number of Tasks

USING CUISOT KEYS ccumecuuecmmiriannsisssssississsimssasssssssssssissssssssss s ssss s s ssscnss
Number of /WE Attempts in the Erase Block Command.........cccocueeuscnseunsunns
Number of Slips in the Copy/Move COmmMandccoweureuecesismismmmssissussucnaes

The Results of the Time Per Keystroke for the Different Taskscccccoeeces

2.2

23

2.4

3.1

3.2

33

34

3.5
3.6

3.7

3.8

3.9

3.10

LIST OF FIGURES

NOrman’s ACHON TREOTY ...veveeeueererrermieieisssssssnsse st issestssse e ssssss s easssssssessasasae 14
The Stages of Activities in the HCI Frameworkccooociicicnciiiiinscns 18
The HCI Cognitive FrAMEWOTKoeveieurieisinercsesinisnsismsisnststssscsisiensiiesssnssasass 21
The Human Behavior Literature and the HCI Frameworkcccocoevviiiciiinnnns 45
The Recursive Structure of @ FOrmula.......coovevineecinnniinnininiinnnene 61
A Formal Grammar for the Meaning of a Formulaccccceeciiiininnnnne. 62
The Three Strategies for Keying Linear FOrmulascoieiiinniiciscnnns 64
Examples of Formulas Used in EXPErIMENt «..coruieiiinniiinicimssssiiiiinines 67
Keyboard for Formula Entry Using the Linear EQItOT.....ccouoiiiiiiiiccssiacnsens 68
The Number of Errors at Parenthesis’ Locations with Different

Levels of Embedded FOrMUIASccceoveeeerennienimenimmiansieseesecciesiiiesisnensnessssssssones 74
A Cognitive Model for Using the Linear EQItOrccovoiiinininnciicnccnininnenens 78
A Schematic Diagram for Using the Linear Formula EditOr.....c.ccooeiinescienss 79
Two Examples of How the Semantic EQitor WOrks.......coouveninsiiisciiiisininns 82
Another Example of How the Semantic Editor WOrksc.cooeirnvsiccncnsnnens 84

vii

3.11

3.12
3.13

3.14

4.1

42

4.3

4.4

4.5

4.6

A Cognitive Model for Using the Semantic Editorcovuviruremsecssemencinnsenes 87

A Schematic Diagram for Using the Semantic Formula Editorocccoviiincne 88
The Hypothesized Interaction Effects of the Independent Variables

0n the Dependent MEASUIESvewurueeriusismnssnissessinssnssnssss s st saense 94
Numbers of Errors at Parenthesis’ LOCAONS ...ccocoieveimimnimnisimneninnensnenscssnsnees 99
The Menu Structure and Menu Traversal in LOtUScoeveenecneriiininnesnssee 110
The Subset of the Original Lotus MENUcoiiiiiimicenismnmmssncscsnsnssncsnencn 112
The Restructured Object-Action Lotus Menucecciiimeneieccsninsseneneen: 114

Cognitive Model for Lotus Menu Traversal when Task-System Match 116
The Hypothesized Interaction Effects between Menu and Instruction........... 124

The Time Per Task Over the Four Sessions for the Different Treatments 135

viii

LIST OF APPENDICES

Appendix

A The Instructions for the Formula Editor Pilot Sty ...cooeeenerecresicisicnsnnens 156
B The Formulas in the Formula Editor Pilot Studycccoesesisissnsissismnniesianens 158
C An Example of the Formula Chunking Results) 161
D The Formulas in the Fromuia Editor EXpEriment......covriieciusisisinisnssnneeas 162
E The Classification of Formulas Used in the Editor Experiment..........ceeeeee. 165
F The Instructions for the Practice Session in the Editor Experiment............... 167
G The Tasks and the Spreadsheets in the Lotus Menu Experimentcceeeveeee 177

ABSTRACT
THE SUBGOAL STRUCTURE AS A COGNITIVE CONTROL MECHANISM
IN A HUMAN-COMPUTER INTERACTION FRAMEWORK

By
Hee-Sen Jong

Chairperson: Judith S. Olson

Human-Computer Interaction (HCI) research has gained prominence
due to the need to make computers easier to learn and use. This research (a)
develops a HCI framework to structure and review HCI models, (b) develops
a subgoal theory that investigates some pieces missing from current models,

and (c) tests the subgoal theory.

This HCI framework combines the Action Theory [Norman, 1986] and
the SRK Framework [Rasmussen, 1976] to describe the seven stages of HCI
activities and the underlying cognitive processes. These activities are
classified as knowledge-based, rule-based, or skill-based behaviors, and they
are associated with different cognitive controls, stimuli, and errors. This
framework clarifies differences in behavior, states hypotheses for
investigation, and structures HCI models. A review of the current models

reveals that they seldom address knowledge-based behavior.

This research models knowledge-based HCI activities by investigating
the subgoal structure as a cognitive control mechanism to overcome bad
interfaces. Users employ extra subgoals both when the task and interface

operate on different objects, and when they require a different action

sequence for task completion. The bottlenecks in HCI arise from the

planning, monitoring, and validating of these extra subgoals.

This research concludes with two studies to demonstrate the subgoal
theory’s explanatory power. In the formula editor study, subjects used a
linear editor and a semantic editor to key in formulas. The linear editor
operates on character strings and the semantic editor operates on formula
structures. Subjects using the linear editor needed many extra subgoals to
translate the mismatched structures, resulting in longer keystroke time,

extra keystrokes, and higher error rate.

In the Lotus menu traversal experiment, subjects saw one of two menu
organizations and received one of two instruction formats to execute simple
spreadsheet tasks. The original Lotus menu was redesigned to have a
consistent structure. Subjects using this new menu could form consistent
subgoal structures to explore the menu. Task instruction formats were also
manipulated to either match or mismatch the redesigned menu structure.
Subjects given the new menu with the matching instructions had the best
performance as they did not need extra subgoals to buffer the out-of-sequence

task actions.

CHAPTER 1
THE RESEARCH PROBLEM

The objective of this research is to further our understanding of the Cognitive
Modeling approach in Human-Computer Interaction (HCI) research. Specifically, this
research (1) develops a conceptual HCI framework that overlays a cognitive architecture
on the stages of HCI activities and uses the framework to point out places ripe for further
research in current HCI cognitive models; (2) points out the roles of subgoal formation to
address some missing pieces in the above framework and; (3) demonstrates empirically

how the subgoal theory explains and predicts some bottlenecks when users interact with
computer applications.

The following sections in this chapter discuss the background, the motivation, the
approach, and the objectives of this research. This chapter concludes with an outline of

the chapters in this research.

1.1 Background and Motivation

The motivation of this research springs from the need to improve the cognitive
modeling approach as HCI issues gain importance. This section explains why HCI
research is important, and in particular the cognitive modeling approach. It points out
why it is impractical to have a comprehensive cognitive model of performance and why

there is a need to develop a conceptual HCI framework.

1.1.1 The Importance of HCI Research

The objective of human-computer interaction (HCI) research is to produce
theories and tools to design better interfaces for computer applications. HCI research has
gained importance and prominence as computer usage becomes essential to compete in
the marketplace; and as computer applications become more complex yet widespread.
The computer users are no longer only computer professionals who are motivated to
adapt to complicated interfaces, but are now mostly discretionary end users who are often
frustrated by incomprehensible and intimidating systems [Bertino, 1985]. There is an
urgent need to make computer applications easier to use for these discretionary users to

realize the full impact and payoff of computer powers.

A group of computer industry leaders echo this concern and stress the importance
of HCI research in a recent CACM! article [Straub & Wetherbe, 1989]. In that article,
the authors interviewed eight Presidents or Chairmen of the largest information system
(IS) consulting companies and three prominent business school IS professors in the
United States. The interview results identify improvement in human-computer interface
as the aspect of technology that has the greatest organizational impact and payoff in the |
1990s. The IS leaders cite underutilization as the reason for the push for improvement in
HCI design. They state that existing interfaces have not reached an acceptable level of
usability thus causing underutilization since non-computer-literate users find systems too
difficult to use. They believe that if the current technology can be fully utilized, the

payoff is enormous in terms of productivity gained and competitive edge.

This end users’ demand for HCI research coupled with the technology push of

rapid hardware and software innovation has led to recognition and acceptance of HCI

1Communications of the Association of Computing Machinery.

3

research. This in turn led to increased research activity, as well as increased expenditure
on the user interface in product development [Lewis, 1990]. The portion of code devoted
to the interface has now risen to 70% in an average end-user application {Dertouzos,
1990]. There is also an increasing number of related conferences and publications.
Although the practical importance of HCI research is now well established, the proper
role of research in the development of the technology and the kind of research that is
appropriate remain in question [Lewis, 1990]. However, there is an emerging trend of
HCI research that emphasizes the development of theory-based HCI performance models.
This trend views the central goal of HCI research as extending psychological theory to
account for differences among interfaces. The claim is that adequate theory would permit
designers to predict the performance of designs without resorting to empirical

comparisons.

1.1.2 The Push Towards Cognitive Modeling

The HCI field is young but has made good progress. The research paradigm has
progressed from empirical comparison of implementations, to the development of design '
guidelines, and recently to the development of HCI design theories using a cognitive

modeling approach.

Early HCI research focused on experimental comparisons of the merits of
implementations, following the human factor research tradition. The wealth of this
research produced a body of literature on the performance parameters for interacting with
computer devices and a collection of guidelines for designing interfaces. This body of
knowledge serves to show the usefulness of testing with real users, but this empirical

approach has its limits.

Making complex systems more usable requires behavioral research, but standard

experimental methodologies are not sufficient. The classical experimental-control

4

comparison can be useful in deciding whether to add a particular feature to a system but it
produces little information about the underlying processes from which one can generalize
[Landauer, 1988]. Also, it is too costly and time consuming. It is simply not feasible to
perform formal experiments for resolving all issues that are likely to arise within the
context of a particular design problem and its associated development cycle {Barnard,
1987]. There is a need for theoretical models that can provide answers to common

interface design problems without always resorting to empirical test [Reisner, 1987].

The theoretical background for HCI research is cognitive psychology. In
attempting to predict and understand users' behavior at the human computer interface, we
need to study higher cognitive processes, €.g., memory, perception, leaming, problem
solving, etc., to understand users from a cognitive point of view. To become skilled in
using a computer application, it is the user's conceptual and cognitive skills, not the
perceptual motor skill, that must be automated [Wilson,Bamnard,Green, & MacLean,
1988]. We need to understand what users understand and how they understand it and the
underlying cognitive processes of their behaviors. Norman calls the application of
findings and theories in cognitive psychology to HCI research cognitive engineering
[Norman, 1987]. From theories in cognitive psychology, researchers derive HCI
cognitive models that attempt to explain the cognitive processes involved in HCL

Understanding these processes will help us design better interfaces without resorting to

empirical comparison.

1.1.3 The Benefits of HCI Cognitive Models

There are many benefits of using HCI cognitive models as design tools besides
the economy of not having to resort to empirical evaluation whenever a new feature is
added or a new piece of software is developed. This power of prediction without

resorting to empirical evaluation comes from the theory-based explanatons furnished by

5

the models. The theory-based models help designers generalize from one design situation
to another. The theory-based models allow prediction of some important parameters,
e.g., performance time, error rate, learning time, etc., even before the product is
developed, by plugging the new task and interface parameters into the models. Since
cognitive models can be used to evaluate individual portions of a new system, evaluation
need not wait until the product is fully developed. This makes early and partial
evaluation possible. Consequently, using cognitive models as design tools reduces the
need to develop ad hoc design techniques, hastens the process of application

development, and saves time and money by reducing empirical testing of products.

There are other less obvious but important benefits when cognitive models are
used as design tools. The process of using the model helps a designer to be more
thorough because the model forces the designer to look the most relevant issues. The
model will help highlight the potential complexity of the new product and thus will
sensitize designers to the complexity users face. The models help designers focus on the
most important design issues. This helps narrow the design space and suggests
improvements to the current design. Having a prescribed method of applying the model

also makes evaluation simpler and more directed.

Cognitive models are not only useful interface design tools, they also help in
creating more effective training material [Elkerton & Palmiter, 1991]. Cognitive models
enable a deeper understanding of the knowledge required for the task. Making user
knowledge explicit in a model helps in designing training materials to take advantage of
learning principles such as transfer of knowledge, interference. etc. Making user
knowledge explicit also will help predict where users will face difficulties and commit
errors. The training material can then be designed specifically to address how to

overcome these difficulties, how to avoid these potential errors, and how to recover from

such errors if committed.

6

1.1.4 The Limited Success of HCI Cognitive Models

Despite these potential benefits, current HCI cognitive models are not widely
used. Practitioners do not use the models to design real life applications (Bellotti, 1987].
HCI models have primarily been used and tested in a laboratory context where the task
environments are somewhat restrictive. The models are cumbersome and unwieldy to
apply to life-size applications. The critics of cognitive modeling approach criticize the
modeling methodology as unrealistic [Carroll & Campbell, 1986]. The models have at
most been used by researchers to evaluate a small portion of an existing application as

examples of applicability rather than in service of a real design issue.

One big inherent problem of HCI cognitive models is that they are fragmentary
and do not address all aspects of the interaction. Two factors hinder the development of
an all comprehensive HCI cognitive model. First, 2 comprehensive model will be too
complicated to put to practical use. Second, the underlying cognitive theories are
themselves fragmented and restrictive in scope [Barnard, 1987; Carroll, 1990]. Theories
in cognitive psychology are typically partial theories focused on a specific component of
mental life — for example, speech, perception, short-term memory, Or problem solving?2. |
Carroll commented that the key problem of HCI cognitive models is that both the
concepts and the methods in basic psychology have been specialized for simple and
abstract situations [Carroll, 1990]. However, in the rich task environments of HCI, the
processes of problem solving, memory retrieval, perception, recognition, and sensory-
motor control are equally important and coordinate among themselves. These
interweaving processes seem to require an integrated theoretical approach to address all

the cognitive resources involved. Since we may not be ready for a unifying HCI theory

2Allport discussed the fragmentary and paradigm-bound nature of cognitive
theory [Allport ,1980].

7

because it may be too complex and there is no underlying unifying cognitive theory of

human performance, the next best thing 1s t0 develop an HCI framework to unify and

structure these fragmented HCI theories.

1.1.5 The Call for an HCI Framework

There is a need for a theoretical HCI framework for understanding the whole HCI
process, for understanding what occurs at the interface, and for contributing towards the
development of techniques where the cognitive issues are addressed [Booth, 1989;
Reisner, 1987]. An HCI framework helps to classify HCI issues as it provides a language
in which to talk about and clarify different types of behavior as a basis for system design.
Classification is an intrinsic part of the development of a new science [Fleishman &

Quaintance, 1984] and it leads to the stating of hypotheses for further investigation.

To be useful and practical, the HCI framework needs to identify the activities
involved when using a computer application, and the underlying cognitive processes
involved in these activities. This framework will then provide a means for highlighting
different theories from related fields, like cognitive psychology, artificial intelligence, ‘
linguistics, etc., that are relevant to the different aspects of the framework. This will help

researchers adapt these theories to HCI cognitive models.

The HCI framework also provides a means to review and structure the HCI
literature. The framework can identify how current HCI cognitive models fit into the
framework and areas that need further research. By knowing the particular aspects of the
framework current HCI models address, it helps interface designers identify models that
are appropriate for different design situations. This is necessary as models are best

applied locally to small aspects of the design where they fit the criteria of the design
decisions [Moran, 1986].

8

The framework also helps identify aspects of cognition that current HCI cognitive
models do not address. In this research. the HCI framework helps identify the role of
subgoals for further research. This illustrates the generative, integrative power of

constructing such a framework.

1.2 Research Objectives and Approach

The objectives and approach of this dissertation are three fold: (1) to develop an
integrative HCI framework to further our understanding of the HCI cognitive modeling
approach and to use the framework to review and structure the HCI literature; (2) to
investigate a missing piece of the framework not addressed by current models by
modeling the roles of subgoal formulation for cognitive control; (3) to validate the model
empirically using common applications. The HCI framework will be derived from
theories in the HCI, the cognitive science, and the human factors literature. We then use
the framework to review the current HCI models and identify the roles of subgoals as one
aspect not modeled. A theory of the role of subgoals as a bridge between the task space
and the system space is developed, and followed finally by empirical demonstration of

behavior consistent with the subgoal theory.

Develop a Framework

This research will develop an integrative HCI framework that encompasses the
various cognitive processes and activites involved when interacting with a computer
application. The framework will be derived from theories in cognitive science, HCI, and
industrial control systems. This framework will include the stages of activities, the types
of cognitive control used, the types of possible errors, and the types of stimuli processed
during interactions. The framework will then be used to review the HCI modeling

literature. The review of the literature points to the need for research to investigate the

use of subgoals in HCI behavior.

9
Investigate the Subgoal Structure as a Cognitive Control Mechanism

Mapping our psychological goals to the physical variables and controls of the task
has been identified in the literature as a bottleneck in HCI [Moran, 1981; Norman, 1987,
Young, 1981]. Yet, there have been few models that explicitly address this important
process. We will discuss the subgoal structure as a cognitive control mechanism that
bridges the task space (the psychological goals) and the system space (the physical
variables and operations). We will develop a theory that points out that a bad interface
causes users to create extraneous subgoals that do not contribute directly to the task goals
but only help users cope with the bad interface. We identify two situations where the
interfaces are bad: (a) when the task space and system space operate on different object
structures; and (b) when the system space does not allow users to carry out actions in the
sequences conceived in the task space. The acquisition, monitoring, and checking of

these extra subgoals require a long time and often exceed memory capacity, causing

erroneous behaviors.

Test the Subgoal Theory Empirically

We will use two common applications to validate our theory. In the first
experiment, we show how users create exma subgoals causing poor performance to bridge
the task-system space when using a linear text editor to enter formulas. The formulas in
the task space have a hierarchical structure but the linear editor in the system space
operates on a linear character string. A simple redesign of a formula editor shows how
extra subgoals contributing to memory load are drastically reduced when using the new
editor. Also, by allowing a direct mapping between the formula structure and the

structure of the editor, the need for planning and checking is greatly reduced.

In the second experiment, a simple redesign of the menu of an existing

spreadsheet package, Lotus 123, shows that an interface that allows users to execute task

10

actions in the sequence as conceived in the task space leads to superior performance by
eliminating extra subgoals. Consistent mapping between how the users think of the task
and the menu structure improves learning, performance, and reduces error rates.

Consistent mapping reduces the need for extra subgoals to restructure users’ conception

of the task.

1.3 Outline of the Chapters

The rest of this thesis will:

(1) develop the HCI framework,

(i1) review the relevant HCI literature on cognitive modeling,
(iii) describe the subgoal theory, and

(iv) describe the experiments and results to verify the subgoal theory

Chapter 2 develops the HCI framework from theories in the cognitive science,
HCI, and human factors literature. The framework will be used to structure and review
the current HCI models. The second part of Chapter 2 develops the roles of subgoal
formulation as a cognitive control mechanism to account for non-skilled behavior, the
missing link in many popular HCI models. This subgoal theory will set up the grounds

and rationale for the experiments described in the next two chapters.

Chapter 3 describes the rationale, the hypotheses, the methodology, and the
results for the laboratory study on the effect of using different formula editors on the
process of mapping task goals to subgoals. By allowing a direct mapping between the
formula structure and the structure that the editor manipulates, the need for extra

subgoals, planning, and checking are greatly reduced.

Chapter 4 describes the rationale, the hypotheses, the methodology, and the
results for the laboratory study on the effect of different menu and instruction structures

on the process of mapping task goals to subgoals. By allowing a direct mapping between

11

the form of instruction and the menu structure, the need for extra subgoals again is

reduced leading to improved learning and reduced error rates.

Finally, Chapter 5 suggests potential contributions and implications of this

research, and outlines a design methodology for applying the subgoal theory.

CHAPTER 2
A HUMAN-COMPUTER INTERACTION
COGNITIVE MODELING FRAMEWORK

This chapter begins with the development of a human-computer interaction (HCT)
framework that imposes a cognitive architecture on the different stages of activities when
users interact with computer applications. This framework will not only help us review
and structure the HCI literature and point us to areas that need future research, it will also
help HCI practitioners choose the appropriate HCI models in their design process by

matching the current design criteria to the models’ strength and coverage.

The chapter concludes with the development of a subgoal theory about the
subgoal structure as a cognitive control mechanism in the HCI framework. In our
framework, users plan their task by decomposing the task goal into a series of action
subgoals that are within the users' performance limitations. This link is not well
addressed by the current HCI cognitive models and can be shown to be the bottleneck for
some tasks even for expert users. The subgoal structure can also be used to address more
problem solving behavior, which is not modeled by current HCI models like GOMS
[Card,Moran, & Newell, 1983] or TAG [Payne & Green, 1986]. This theory will set the

grounds and premises for the experiments described in Chapter Three and Chapter Four.

2.1 The HCI Framework

The HCI framework evolves around the task as the task is the focus and objective

of using any computer tools. The purpose of the user interface is to enable people to use

12

13

the computer to help them perform some tasks [Johnson, 1985]. The HCI framework will

have to address the various stages of physical and cognitive activities involved when

performing tasks through the interface.

A task has been defined as: "The achievement of a set of goals while maintaining
a set of constraints" [Filkes, 1982]. When interacting with a computer, the user evaluates
the situation and decides the task goals to accomplish. The task goals are derived from
the task domain. In some cases the user knows exactly what the task goals are and the
procedures to accomplish them. In such cases we can say that the task is routine. In
other cases the user may be clear about the task goals but uncertain about the procedures
to choose, and these cases can be classified as problem-solving situations. Finally, there
may be cases in which the task goal is not altogether well-defined and it is the function of
the user to create and identify a satisfactory result. These situations can be described as
creative. Our framework will deal only with situations where the task goals are well

defined but the users may or may not know how to accomplish the task goals through the

interface.

For each task goal, the user initiates a plan to accomplish it with a series of
subgoals. Depending on how adequately the interface supports the execution of the task
goal and the user’s knowledge of how to execute the task goal, the subgoal structure may
be complex or simple, or even unnecessary if there is a simple method to achieve the task
goal. The subgoals are chosen so that they can be performed within the set of cognitive
constraints. The cognitive constraints arise due to limitation of the user’s cognitive
resources like working memory, the knowledge of the methods, etc. After the subgoals
are formulated, the user then chooses the procedures and actions to accomplish each

subgoal and perceives the feedback from the system and evaluates whether the subgoals

have been accomplished.

14

This cycle of the stages of activities—plan, execute and evaluate—will be the
core structure of our HCI framework. On top of these stages of activities, we will impose
a cognitive architecture to specify the underlying cognitive activities and cognitive

resources required at each of these stages.

2.1.2 The Stages of Activities

We will adapt Norman’s Action Theory [Norman, 1986] to model the stages of
activities when interacting with a device. This qualitative theory describes seven stages
of activities that elaborates on the plan-execute-evaluate cycle discussed above. One part
of the theory concerns the production of an action; the other part involves the feedback
loop. The seven stages of activities are: forming the goal, forming the intention,
specifying an action, executing the action, perceiving the system state, interpreting the

system state, and evaluating the outcome. Figure 2.1 depicts the Action Theory.

Cimenion >

'

Acton Interpretation
Specification

—

Figure 2.1 Norman’s Action Theory
(Adapted from [Norman 1986])

15

In the Action Theory, the Goal is very general. To use Norman’s example, the
goal can be as general as improving the appearance of a letter [Norman 1986, page 44].
From this general goal, the user generates a few intentions, for example, center the
headings, delete a blank line, etc. For each intention, the user needs to specify some
actions to achieve the intention. After the user executes the actions by physically typing
or moving the mouse, the user needs to perceive, interpret and evaluate the feedback from

the interface and sees whether the intention has been met. Further intentions may be

generated in the process.

Task Goal and Action Subgoals

For our framework, we modify the Action Theory to make the Goal more specific.
We narrow the general Goal into the more specific Task Goals that are derived from the
task environment cues, e.g., a marked up manuscript for editing will have clear individual
task goals corresponding to the changes to be made. Using Norman's example, our task
goals will be the more specific delete the line, center the heading, etc. In our framework,
we want to distinguish goals that are generated in the task space and action subgoals that
are generated as a result of having to use the interface. Task goals are generated from the
task environment but subgoals are planned by users to achieve the task goal. The action
subgoals are generated in and constrained by the system space, ¢.g., what operators are
available, what methods the user knows, what objects the system manipulates, etc. The
subgoals are a bridge between the task space and the system space. To help clarify the
distinctions between goals and subgoals in our framework, we can think of goals as
couched in the language of the task space whereas the subgoals are couched in the
language of the system space. For example, for the task goal of deleting a blank line, the
subgoals will be moving the cursor to the line and issuing the command through the

menu. We will thus modify the Action Theory’s Intention stage to be the Subgoals

16

Formulation stage and modify the Goals stage to be the more specific Task Goal

Formulation stage.

Our framework and theory will not deal with situations where the users do not
know what the task goals are, previously identified as a creative process. This is beyond
the scope of this framework!. Thus, our user will know that in order to make the letter
look nice, he needs to center the heading and delete the blank line. Any practical HCI
model will not handle the case where the user does not know the task goals or the desired
results. The user may or may not know the method to achieve that task goal using the

interface but the user has to know the desired results.

This separation of the task goal from the subgoals of interaction is very important
for both designing and evaluating interfaces. Some tasks take a long time to execute
because the task goals are very difficult to formulate, €.g., creative design; whereas some
tasks take a long time to execute because the interface does not support the direct
execution of the task goals, e.g., a textual command-based drawing application. We
cannot aid the user by changing the interface in the former situation but we should
certainly improve the latter interface. We want to design interfaces that are transparent,

such that users can think in terms of concepts in the task space rather than those in the

system space to the greatest extent possible.

Method Specification

In our reformulation of the Action Theory, users will have a corresponding
method or procedure that specifies the actions to accomplish each subgoal created. We
will change Norman's Action specification stage to the Method specification stage. If the

user does not have a method for a particular subgoal, the subgoal will have to be further

IFuture research could possibly extend in this direction.

17

refined until a corresponding method is known. For example. if the user knows the
command for deleting a blank line, the subgoal will be to issue the command; if the user
does not know the command, the subgoals will be to invoke the menu system, to explore
the menu, and to look for the synonym of delete and the synonym of line. Figure 2.2

shows the slightly different stages of activities in our HCI framework.

Although the Action Theory went on further to explain the gulf of execution and
the gulf of evaluation causing a device to be difficult to use, the theory does not address
the cognitive mechanisms that creates these gulfs. The Action theory by itself is not
explicit about the kinds of cognitive activities, the types of possible errors, and the types
of cognitive controls present at the different stages. What we need to complete the HCI
framework is to overlay a cognitive architecture on the stages of activities that explicates
the cognitive processes underlying these activities. This complete framework can then be
used to link HCI activities with human performance theories in the psychology and

human factors literature.

2.1.3 Rasmussen's SRK Framework

Our framework will include a cognitive architecture by adopting the Skill, Rule,
and Knowledge-based (SRK) classification of human operators’ behavior in industrial
control systems [Rasmussen, 1976, 1980]. Rasmussen developed the SRK framework to
model human operator information-processing abilities and limitations in complex
environments, e.g., power plants, chemical plants and aircraft cockpits. (For an overview
of the SRK framework. see Rasmussen [1986]). The framework has been embraced by
designers, engineers and regulators as providing understandable, usable, and extendable

concepts for classifying the behavior of humans in their interaction with the world

[Goodstein,Andersen, & Losen, 1986].

18

Task
Domain

Y

Task goal
Formulation

Formulation

M?thod, Interpretation
Specification

Execution Perception

—

Figure 2.2 The Stages of Activities in the HCI Framework

In the SRK framework, complex process operators’ behaviors are classified into
three categories, skilled-based, rule-based, and knowledge-based. These three categories
are the basis of cognitive control for the operator's behavior. These three levels of
behavior associate with them different types of stimuli processed from the environment,

and different types of human errors during performance.

These three levels of behavior correspond to different levels of familiarity with
the task and thus require qualitatively very different types of cognitive control. We can
think of the types of cognitive control as the different information processing strategies or
modes. At the knowledge-based level, the task situation is novel or the actions are t00

complicated to be controlled by simple retrieval of action rules. At this level, cognitive

19

control must be planned on-line using conscious analytical processes and previous
knowledge. Errors at this level arise from resource limitations like working memory
overload, or incomplete or incorrect knowledge. At this level, the stimuli from the
environment are evaluated as symbols for causal reasoning. At the rule-based level, the
task is familiar and the behavior is controlled by stored rules. Errors at this level arise
from mistakes and are related to misclassification of situations leading to the application
of the wrong rule, or are related to the incorrect recall of procedures. The stimuli from
the environment processed is perceived as signs that triggers programmed response at this
level. At the skill-based level, behavior is controlled by stored sensory-motor programs
represented as analogue structures in a uime-space domain. Errors at this level arise from
slips and are related to force, space, or time co-ordination. At this level, the stimuli from

the environment processed are perceived as signals, as mere feedback to the sensory-

motor programs [Rasmussen, 1986].

Similar tripartite classification of human behavior can be found in other
prominent research thus giving it validity. Fitts [Fitts & Posner, 1967] proposed three
stages of skill learning: cognitive, associative, and autonomous. The same three stages '
can be found in the cognitive model ACT* [Neves & Anderson, 1981] where the three
stages are: encoding, proceduralization, and composition. Also, Card et al. [1983]
describe the evolution of cognitive skill as a passage from problem solving behavior, with
its emphasis on a problem space, to a more perceptual-motor based cognitive skill. We

can therefore graft this proven behavior classification into our HCI framework.

We will superimpose the SRK framework on Norman’s Action theory as there are
many similarities among activities in HCI and process control. Both require a high level
of cognitive skills rather than physical skills alone. We note that Norman’s Action
Theory is similar to Rasmussen's eight stages of decision making for operators in

industrial process plants: activation, observation, identification, evaluation, goal

20

selection, procedure selection and activation [Rasmussen, 1980]. The difference between
the two is in where the cycle of activities starts. In HCIL, it starts with the user forming a
task goal and then planning the procedures to carry it out. In process control, it starts
with the operator reacting to the signals from the displays and then initiating a routine to
remedy the situation. In HCI, the user has more control of the interaction and pace as he
initiates the interaction; whereas in process control, it is more event driven; the operator
monitors the signal from the gauges, interprets them, and reacts if necessary. However,
when users and operators are continuously engaged in the feedback, plan, and execute
cycle, as in real-life interaction with the devices, the HCI activities and process control
activities are identical. We will thus superimpose the SRK framework on Norman's
Action theory to make our HCI framework complete with descriptions of both the stages

of activities and the underlying cognitive control and processes.

Figure 2.3 shows how we can superimpose the SRK framework on the modified

Norman'’s Action theory. The diagram is stratified into three regions where each region
corresponds to one level of cognitive control and the associated type of error and

stimulus. The top one-third are knowledge-based activities, the middle one-third are rule-

based activities, and the bottom one-third are skill-based activities.

In the next three sections, we discuss how the concepts and ideas from the
Rasmussen’s SRK framework (adapted from Rasmussen [1986]) can be applied to
interpret HCI activities. We find that the explanatory power of the SRK framework can
be extended easily to the domain of HCI. We will borrow heavily the ideas from the

SRK framework but supplement the discussion with examples specific to the HCI

domain.

21

Task
Domain

__________ Task goal
Formulation

resource
bound
EIrors _

Knowledge-based
Subgoals
Formulation

Method |- — — — —
Specification

Rule-based

Skill-based

Figure 2.3

Interpretation

signal

The HCI Cognitive Framework

2.1.4 Types of Cognitive Control

The SRK framework gives us a guideline of the three different types of cognitive

control that are possible, skill-, rule-, and knowledge-based, depending on the users'

familiarity with the current task. In general, the user proceeds through the seven activity
stages in the HCI framework in sequence. However, as stated by both Norman’s Action
Theory and Rasmussen's SRK framework, the higher level behavior may be skipped if

the user is familiar with the task. That is, not all tasks will need knowledge-based level

control as users might launch into rule-based or even skill-based behavior for well-

practiced tasks. There exist short cuts to go from one stage directly to another non-

adjacent stage. Also, stages may be repeated as necessary. For example, in using the

22

mouse to highlight a familiar menu item, the cycle of the skill manipulation of the mouse
and the perception of the signal as the flashing cursor position is repeated until the cursor
is moved to the desired menu location. In an example in which a user issues a familiar
command to alter a system state, the knowledge-based cognitive control will be skipped
and the user will launch into rule-based control to issue the entrenched command directly
which translates into the skilled typing of the required keys. Thus, these three levels of

cognitive control play important roles in different situations.

During knowledge-based performance in unfamiliar situations, the user employs
his problem solving skills to map task goals into action subgoals that will bring the
system closer to the desired state. A major task at this level of performance is to transfer
those properties of the task to a symbolic representation understandable to the users and
more amenable to problem solving in the system space. To arrive at the action subgoals,
the user employs a strategy, €.g., analogy, mental models, generalization from other
solution methods, data transformation, etc., to transform the symbolic representation of
the task into subgoals with known execution procedures. The performance at this level

depends on the semantic content of the task, the strategy, and data transformation used to’

achieve the task goal.

During rule-based performance, the user employs a known solution plan instead
of problem-solving to arrive at the set of subgoals necessary to accomplish the task. For
each subgoal, there is an associated method or procedure to execute it. The procedure
could be long and complex for a familiar task. Rule-based performance depends on the

syntactic form of the interface language and the ability to recognize the states and to
recall stored rules.
During skill-based performance, the execution of the procedures is translated into

well-drilled sensory-motor behavior like skilled typing and its tactile feedback, and

mouse maneuvering and the cursor signal feedback from the display. This level of

23

performance depends on the physical form of the physical objects manipulated. The
more fluid the users are at these physical tasks, the more the users are able to free
resources to compose complex task sequences at the rule-based level. For example, if a
user is not a skilled typist, instead of issuing one rule that says type the command ‘/wcs’
(set column width in the Lotus spreadsheet program), he needs to formulate a series of
rules to find the '/ key on the keyboard, then hit it, find the 'w' key, then hit it, and so on.
The cognitive control will need to be even one-level higher at the knowledge-based level

if the user is not familiar with the command to change the column width.

The Nature of Cognitive Control. Besides having different triggering conditions,
the three levels of behavior have fundamental differences in the nature of the cognitive
control. The cognitive control for rule-based and knowledge-based behavior is serial,
slow, deliberate, resource-limited, and is accessible to consciousness. On the other hand,
the cognitive control for skill-based behavior can be parallel, is rapid, effortless, not
resource bound, and possibly not accessible to consciousness [Shiffrin & Dumais, 1981].
It is possible that through repeated practice cognitive control may shift from higher to

lower levels.

The Transfer of Cognitive Control. The control of user activity shifts from
knowledge-based to rule-based to skill-based as the familiarity with the task increases
through practice. As the user increases his skill level, the size of the task fragments
increases. During early skill acquisition, the activities are controlled by rules and
feedback governing very elementary acts, €.g., pressing a single key, moving the mouse.
As the skill develops, the feedback will be stimulus patterns and the rules will be
procedures that execute a longer sequence of elementary acts. During fully-developed
skill performance, the activities are controlled by automated routines without much need
for conscious monitoring. Rasmussen [1986] stresses that it is not the behavior patterns

of the higher levels that are becoming automated skills. Automated time-space skills get

24

developed and become more elaborate while they are controlled and supervised by the
higher-level cognitive activities that eventually deteriorate. Users will eventually lose
track of the basic causal or functional understanding when ski..s get fully developed.
This has a sobering implication for interface design—bad interface can still produce

skilled users if the users are pushed through enough rote practice.

All the above discussion about the three levels of behavior or cognitive control
assume that the user gets the required feedback from the system appropriate to the current
level of cognitive control. The following section develops the concept that the same
feedback can be perceived as signals, signs, or symbols depending on the level of

cognitive control.

2.1.5 Types of Stimuli Processed

The role of the information observed from the environment is different in the
three levels of cognitive control. Users perceive signals during skill-based behavior,
interpret signs during rule-based behavior, and evaluate symbols during knowledge-
based behavior. The same event can be perceived as signal, sign, or symbol depending

on the user’s familiarity with and the role of the expected task feedback.

At the skill-based level, the control of the sensory motor system is continuous,
synchronizing the physical activity such as navigating the menu using the mouse. During
this level of control, the system feedback is perceived as time-space signals, continuous,
and quantitative indicators of the system state. These signals have no meaning except as
direct physical data. They are generally confirmatory in that they are expected. For
example, during menu traversal using a mouse, the user perceives the feedback of
flashing menu items from the screen to know that the mouse movement is indeed

received by the system and the navigation is within the bounds of the menu. During skill-

25

based behavior, a change in the screen display or even the tactile feedback of keys

pressed can be perceived as adequate feedback of successful execution.

At the rule-based level, the information perceived is defined as a sign. Signs are
generally labeled by names that refer to system states or action subgoals, e.g., a particular
display, a menu item, etc. Signs do not reflect the concepts or the functional properties of
the environment; they only serve to activate well-learned predetermined procedures.
Signs can only be used to select or modify the rules controlling the sequencing of skilled
subroutines but they cannot be used for reasoning Or to generate new rules. In our

example of menu traversal, expert users look actively for the desired label of a menu item

as a sign of an action that will accomplish a subgoal.

At the knowledge-based level, information must be evaluated as symbols for
causal functional reasoning in order to predict or explain unfamiliar system feedback.
Symbols refer to concepts relating to the functional properties of the task space that can
be used for reasoning. Again using our menu traversal example, naive users will need to
read the label of the menu item, compare it to his internal functional representation of the

task and decide whether the menu item will accomplish the task goal or move the system

state closer to the task goal.

2.1.6 Types of Errors

Many of the current HCI cognitive models, ¢€.g., the GOMS family of models, do
not model errors explicitly. However, human errors and their prevention, prediction and
recovery play an important role in interface design. Analysis of human errors is
important to validate HCI models. Success in the prediction and simulation of error-free
performance is no proof of the validity of a model [Rasmussen, 1986]. Also, research has
found that even experts commit many errors. In an expert text editing study, it is

estimated that 35% of the expert's time and 80% of the variability in time can be

26

accounted for by errors [Landauer, 1987]. In another study, up to 21% of total tasks
involve major errors [Roberts & Moran, 1982]. It is thus important to include error

categories and their underlying cognitive process as part of our HCI framework.

There are also different types of possible errors associated with the different levels
of cognitive control: resource bound errors are associated with knowledge-based

behavior; mistakes are associated with rule-based behavior; and slips are associated
with skill-based behavior.

The types of possible errors during knowledge-based behavior are caused by
limited resources. The errors arise out of not knowing the methods to execute the tasks
(limits of learning), applying the wrong analogy (limits of problem solving), etc. Also,
errors can arise out of memory overload, keeping track of too much information in the
working memory. In our HCI framework context, keeping track of multiple nested

uncompleted subgoals contributes to memory load. .

During rule-based behavior, errors are most frequently manifested as recall of
incorrect rules or incorrect recall of rules. A high frequency rule may dominate a less
used rule if the triggering conditions are similar. Another mistake is forgetting an
isolated action in a long action sequence, €.g., forgetting to select a piece of text before

issuing a formatting command.

During skill-based behavior, errors are termed “slips” as they are non-intentional
and arise due to time-space coordination problems. For example, in menu traversal using
a mouse to select an item, the user may select the wrong item because attention has

already been switched to getting to the next task. Another example is the reversal of the

order of two characters during touch typing.

Error Recovery

Just as higher level behavior serves as cognitive control for lower level behavior,
higher level behavior also serves as cognitive control for the monitoring and recovery of
lower level errors. A slip will need to be recovered by a rule-based or knowledge-based
behavior. If there is a known rule to recover a slip, e.g., an UNDO command, that rule
will be applied to reverse the undesired system state caused by the slip. If the slip brings

about an unfamiliar system state, knowledge-based problem solving behavior must be

initiated to recover the damage done. Similarly for mistakes, a remedy rule will be

applied if one is known; if not, knowledge-based behavior will be needed. There are |
really no good remedies for resource bound errors when the user does not know the right |
procedures except to continue to explore for the right actions needed to accomplish the

task. Working memory overloads are the worst kind of error as the only remedy is a

complete redesign of the interface to avoid the excessive memory load.

2.1.7 Types of Memory Stores and Types of Memory Representations

Implicit to the above discussion are the types of memory resources needed and the;
types of memory representations for the different stages of activities. Skill-based
behavior uses cognitive resources in the form of motor memory and visual memory.
Rule-based behavior taps the long-term memory where the rules are stored. Short term
memory may be needed to hold the expected feedback from the system for interpretation.
Knowledge-based behavior requires both the long and short term memory. The user
retrieves from the long term memory general knowledge needed to decompose the

present problem. Short term memory is needed to plan and keep track of the action

subgoals.

During skill-based behavior, the memory representation is a time-space motor

program for skill-actions [Rasmussen 1976]. During rule-based behavior, the memory

28

representation is procedural knowledge. For knowledge-based behavior, the memory
representation is declarative.

We have now described all the components in our HCI framework. In summary,
to create our HCI framework, we have adapted and integrated Norman's Action Theory to
describe the stages of activities and Rasmussen'’s SRK framework to describe the
underlying cognitive processes when users interact with computer applications. We will

next use this HCI framework to review the literature on HCI cognitive models.

22 Current HCI Cognitive Models and The HCI Framework

The HCI framework will help us structure the literature on HCI cognitive models.
To keep the review within reasonable length, it will necessarily be brief. An outline of
the models will be given but examples of the use of the models will be omitted.
However, references to the original work are given where interested readers can find
detailed descriptions and examples of use. After outlining the models, we will describe

how the models fit into our framework.

Most current HCI models are rule-based and skill-based models. This can be
expected as rule-based and skill-based behavior are predictable and more amenable to
quantitative models. There is very little research on modeling the feedback loop of the
framework, i.e., there is not much done to model users’ perception of device information
output. Lohse’s [1991] cognitive model of perception begins to explore this area. There
is also very little research on knowledge-based behavior—how users map task goals into
action subgoals. Following is a review of the major HCI models in the literature. We
will group the models under the headings of formal grammar family and the GOMS
family of models. Under the formal grammar model and its variant, we will review
Reisner's [1981] BNF model, Moran’s Command Language Grammar (CLG) [Moran,
1981], and External Task to Internal Task mapping (ETIT) [Moran, 1983], and Payne

29

and Green’s [1986] Task Action Grammar (TAG). Under the GOMS family, we will
review the GOMS model and the keystroke level model (KLLM) (Card et al., 1983],
Keiras and Polson’s [1986] Cognitive Complexity Theory (CCT), John’s (1988] Critical
Path Method (CPM) extension of the GOMS model, Lewis and Polson’s [1990] CE+2,
and finally, Young and Simon’s [1987] Planning Model.

2.2.1 Formal Grammar Family

The behavior of a human interacting with a computer can be viewed as a
Language [Payne & Green, 1986]. Within this context, Formal Grammar is a tool that
allows the structure of the interaction to be analyzed and manipulated. A Formal
Grammar specifies the structures of a language by constructing a collection of rewrite
rules that can be used systematically to generate each and every possible legal
communication. When used in HCI by models like TAG, CLG, etc., these rewrite rules
produce a series of action sequences made up of elementary tasks and cognitive units. An
example of an elementary task is to type a letter and an elementary cognition unit is to

retrieve a command.

Formal grammar models are competence models as they only model the legal task
sequence that can be produced but not the actual performance in terms of time and error.
The structure of the grammar does not allow easy prediction of actual performance in
terms of the performance time, the underlying cognitive processes and limitations, and
how users derive those rules. They are rule-based behavior models where each task goal

is described by rules that specify the possible final action sequences. Ease of use of a

2Not an acronym. The name comes from the fact that CE+model is an
integration of the CCT Theory and the EXPL model on learning from examples [Lewis et
al. 1988].

30

device is measured by a complexity metric, normally a measure of the number of rules,

the number of similar rules, and rules that can be transferred from other systems.

Reisner's BNF Grammar

Backus-Norm Form (BNF) notation has been used to formally describe
programming languages using context-free phrase structure grammars. BNF allows the
syntax of the language to be described precisely and the notation can be used to write
compilers that are executable by programs. BNF can thus serve as a meta-language to
describe different languages. Reisner [Reisner, 1981; Reisner, 1984] adopted this

notation to describe the HCI ‘language’ where each task sequence can be viewed as a

language statement.

Reisner describes the user’s knowledge of the system in terms of the grammar of
an ‘interaction language’. The grammar describes all the rules which produce legal
action sequences. According to Reisner, the resulting rules can then be used to predict
performance time and errors according to the number of different terminal symbols, the
lengths of the terminal strings for particular tasks, and the number of rules necessary to |
describe the structure of some set of terminal strings. However, such predictions are not

very successful as analysts using this notation need to supply the time estimates for each

terminal action themselves.

As cast in our HCI framework, the BNF grammar only models one stage of
activity, the method specification stage. The cognitive control is rule-based and the

grammar does not model the feedback loop nor the planning stage.

One criticism of the Reisner approach is that it does not model the consistency of
the interaction language. For example, in the BNF notation, five rules with similar

structures are as difficult to learn or perform as five rules that have totally different

structures.

31

The Task Action Grammar (TAG)

Payne and Green [Payne & Green, 1986] chose to model HCI activities using a
Task Action Grammar after observing that none of the existing models addresses the
consistency issue of the interface. It is reasonable to assume that an interface that has a
consistent structure or allows users to execute the tasks using objects and action
sequences conceived in the task space will lead to better learning and performance. TAG
is able to account for consistency of interface structure by using a two level grammar to
account for rules that have similar syntax. When a family of tasks is executed by task
sequence with the same structure, Or with the same syntax using formal grammar

terminology, only one rule is needed for the family of tasks.

TAG describes the task in terms of simple tasks and rule-schemata. Simple tasks
are those that users can routinely perform that can be accomplished with no control
structure, i.e., simple tasks are the subgoals in our framework. One example of such
simple tasks is to move the cursor one character to the right. The rule schemata are
production rules where the simple tasks are represented according to their features. This
way, two tasks that have the same structure but only differ in the features can be |
represented by only one rule instead of two. For example, moving the cursor in any one
of four directions has only one rule that has a direction feature that can take on one of

four direction values. This is how TAG models consistency.

Like BNF, TAG does not attempt to model the cognitive process involved in HCL
It only describes what the user knows but not how the user uses that knowledge. How
users combine several “simple tasks” to execute a task goal is not specified. There is no
mechanism to chain simple tasks and there is no precise definition of what a simple task
is. It does suggest that there is lesser learning and performance cost for novel simple

tasks that share the same structure with known simple tasks. In the authors’ words, TAG

models family resemblance and semantic consistency.

32

TAG covers almost the same aspects of our HCI framework as BNF except that
TAG models the user’s knowledge of the structure of the interface language. It again
uses rule-based cognitive control for specifying action sequences but adds the
knowledge-based control of the understanding of the task structures. Users can apply
generalization to infer methods to execute novel simple tasks that share the same
structures with known methods for executing other simple tasks. Errors are modeled only
in terms of applying the wrong features due to inconsistency in language structure and
semantics. For example, in a system where the command to delete a word is DELETE

WORD, users would guess the corresponding command to delete a line as DELETE

LINE. not REMOVE LINE.

Both TAG and BNF are rule-based models as they map external tasks directly to
internal operations. There is no role for subgoals in these two models. As castin our
HCI framework, both TAG and BNF model only one stage of activity, the method

specification stage. The cognitive control is rule-based and the models do not model the

feedback loop nor the planning stage.

Command Language Grammar (CLG)

Command Language Grammar (CLG) [Moran, 1981], takes an approach that uses
several levels of mappings with the potential to model the different levels of cognitive
control. Instead of one direct mapping, CLG offers a hierarchy of mappings. The levels
of description are designed to correspond to the levels of representations that users
presumedly have. The grammar consists of three components and each component has
two levels: conceptual component (task level, semantic level), communication
component (syntactic level, interaction level), physical component (spatial layout level,

device level). The last two levels, the spatial layout level and the device level, are not

described in the model explicitly.

33

Grammar rules like those in BNF are used to describe knowledge in each mapping
level. The task level describes the task domain addressed by the system. The semantic
level describes the concepts represented by the system. The syntax level describes the
elements of the interaction language in terms of commands, arguments, context and state
variables. The interaction level describes the actual interaction between user and system:

the keystrokes, mouse movement and system feedback.

The different levels of description in CLG correspond to the different stages of
activities in our HCI framework. The task level can be equated to the task goal formation
stage; the semantic level is the action subgoal formation stage; the syntax level is the
method specification stage; and the interaction level is the execution stage. Like our
HCI framework, CLG states that users need not have knowledge at all levels in order to
use the system. Some lower level knowledge will be procedural while other knowledge
can be declarative. Users can operate with just the interaction level knowledge but will
not have the necessary system concepts for error recovery. On the other hand, users may

know the task goals but not know the method nor the commands to reach it.

CLG is again a competence model and not a performance model. No time
parameters are provided for the interaction level elements. The model does not address
users’ cognitive limitations and does not model errors or the processing of feedback. The
CLG approach seems potentially powerful as it covers many aspects of the HCI
framework but it is too complicated to put into practical use. Another drawback of the

model is that it does not show how to map from one level of description to the other.

External Task to Internal Task (ETIT) Mapping

Moran [Moran, 1983] developed External Task to Internal Task (ETIT) Mapping
to address some drawbacks of CLG. ETIT is simple to use and it provides a mapping

between the two levels of description. ETIT is not strictly a cognitive model because

34

users’ cognition is not modeled but implied by the complexity of mapping from the
external task space to the internal system space. ETIT is a form of task analysis that
models the mapping between the users’ representation of the task and the system’s
representation of the task. ETIT compares representations of these two spaces. Each
external task is represented by an action and an entity as defined in the task domain. The
internal task is also represented by an action and an entity but defined in the system
domain. The number of rules needed to map the external task space to the internal task
space reflects the complexity of the system. Moran also suggests that transfer of
knowledge from one system to the other can be measured by the common rules between
the two systems.

When cast against our HCI framework, ETIT is very much like Reisner's BNF
grammar as it only models the method specification stage. The cognitive control is rule-
based. Although a promising idea due to its ease of use, ETIT has not been used in

practice or further developed.

We have now reviewed the major HCI cognitive models based on formal
grammar specification or its variants. These models generally do not model the user’s
cognitive processes, cognitive limitations and erroneous behavior. They are all rule-
based cognitive control as a result of the rule-rewrite structure of formal grammars. We
will now turn our attention to another family of models, the GOMS models, which enjoys
better success and acceptance than the grammar model due to the ability to predict

performance behavior and time.

2.2.2 The GOMS Family of Models

The GOMS (Goals, Operations, Methods, Selection rules) family of performance
models is the most well known and discussed in the literature. Many extensions and

examinations of the GOMS model have surfaced in the literature (see Olson and Olson

35

[1990] for a review). Its success has spurred the growth of the cognitive engineering
paradigm in HCI research. The GOMS model, and others that follow this approach,
predicts users’ performance by modeling the users’ knowledge of the operations to
complete a task. Using the users’ knowledge structure and a set of performance
parameters provided by an underlying cognitive architecture , GOMS models make
reasonably accurate performance prediction. The underlying cognitive architecture is
called the Model Human Processor (MHP). The most widely used of the GOMS models
is the Keystroke Level Model (KLM) where the elementary operations are those that have

the same time magnitude as that of pressing a keystroke.

GOMS was intended only to model the flawless performance of expert users. The
model’s prediction is reasonably accurate when restricted to expert users but because it
avoids modeling errors and non-expert users, it has been much criticized. Although it has
its share of limitations, it has nevertheless served as the benchmark against which other
models are compared. Early applications of GOMS analyses have been restricted to
limited domains, e.g., text editing and system commands, but have now been proven
useful in other domains like spreadsheet [Olson & Nilsen, 1988] and telephone operator

workstation software [John, 1990].

We review the GOMS model, its companion Model Human Processor (MHP), as
well as related models including the Keystroke-level Model (KLM), the Cognitive
Complexity Theory (CCT), the Critical Path Method (CPM) extension to GOMS, Polson
and Lewis's CE+, and the Planning Model. Again, the review will be necessarily brief
but references to the original articles are given. Furthermore, readers can refer to Olson

and Olson [1990] for a comprehensive review of the GOMS family of models and their

extensions.

36

The GOMS Model

The GOMS model describes the cognitive control in terms of the knowledge users
must have to interact with the system. The knowledge is described in four categories:
Goals, Operations, Methods, and Selection rules. The initial letters for these four
categories of knowledge make up the acronym GOMS. The Goals (or Subgoals) are the
system states or task objectives the user wants to reach. The Operations are the cognitive
and physical actions when using the system. The Methods specify combination of
actions that form a procedure to achieve the goals or subgoals. The Selection Rules
specify which methods to choose to achieve a goal given a certain task condition. The
goal structures, the method choices and the selection rules together describe the cognitive

control for the operations.

The GOMS model is actually a family of models where each deals with a different
grain size of analysis. The grain of analysis depends on the grain size of the operations
described. At the one extreme, the operations are unit-tasks which accomplish subgoals.
This level of analysis is useful for initial system design where the available elementary
operations are not known. However, the time estimate for the unit-task level operations

will necessarily be coarse thus diminishing the predictive power. The unit-task GOMS

models seldom are used in practice.

At the other end of the spectrum, the operators are defined in terms of elementary
operations where time estimates are available from the MHP model. The level of
analysis is called the keystroke-level model (KLM) as the time estimates for the
operations are the same magnitude as the time to press a keystroke. The KLM proves to
be the most widely-used GOMS type model as it can predict performance time to a fair

degree of accuracy for expert users. We will describe the keystroke-level model in the

next section.

37

Although the GOMS models seem to provide the mechanism of cognitive control
to cover all three levels of behavior in our HCI framework, in practice so far it is
basically a rule-based model. The potential for using the goal structure to describe
knowledge-based behavior has not been explored in detail. Card et al. [1983] specifically
state that goals do not contribute to the time calculations of the various models since goal
manipulation should not take more than .5 seconds (page 182). The subgoals are used
only to break the task into subtasks called 'unit-tasks' where known methods of operations
are available to the users. In the GOMS world, Goals and Operators are not really
different sorts of things. They both refer to actions taken by the users, of greater or lesser
scope. Operators are simply Goals which are treated as elementary at a particular grain of
analysis [Simon & Young, 1988]. In GOMS analyses, all goals or subgoals are fully
decomposed into a set of elementary operations for execution. Thus, the GOMS model is
not much different from the formal grammar model previously described. What makes
the GOMS models different from the grammar models is the parameterization of the
elementary operations that gives the GOMS models ability to estimate performance time.
Also, the selection rules to choose among multiple methods that can be applied to the
subtask are the cognitive control in the GOMS models not present in formal grammar
models. Otherwise, like formal grammar models, the specific GOMS models explored to
date do not address the details of knowledge-based behavior in unfamiliar situations, do

not address how users handle errors and the feedback other than signals from the system.

The Model Human Processor (MHP)

The Model Human Processor (MHP) [Card et al., 1983] is not a GOMS model but
it defines the cognitive architecture of the human informaton processing system that is
common to all GOMS models. This cognitive architecture is defined by a set of

operating principles for the cognitive system constituting the cognitive, perceptual, and

38

motor processor and their associated stores. The operating principles are a succinct
summary of the human performance literature, €.g., Fitts’ law, problem space principle,
etc. They describe the possible behaviors under different conditions. However, these
principles are not referenced in the current GOMS analyses. What is used in the GOMS
analyses is the set of parameters for the elementary operations which Card et al. [1983]
abstracted from the literature. Examples of these elementary operations are: the time to
retrieve something from short-term memory, the time to press a key on the keyboard, the

time to get a piece of information from the screen, etc.

The MHP serves as a foundation for the rest of the GOMS family of cognitive
models by providing a common cognitive architecture and performance time parameters.
The GOMS family of models simply provides a knowledge control structure that defines
how the users will interact with the device with operators of different grain sizes. If the
operators are in the grain size of the elementary cognitive, motor, and perceptual
operations, we obtain the keystroke level model. The KLLM can estimate performance
time with reasonable accuracy by summing up the time estimates of these elementary
operations provided by the parameters of the MHP. Card et al. [1983] called the

parameterization process “simplifying theory into practical engineering models.”

The parameterization in GOMS analyses fits best when the users are experts
engaging in routine and flawless behavior. The MHP does have a small bandwidth for
each parameter to vary in terms of the performance for slowman, middleman, and

fastman. This bandwidth is too small to address non-skilled, non-routine or erroneous

behavior.

In terms of our framework, the MHP parameters occupy the space of skill-based
behavior. They basically summarize the time needed to perform activities at the skill-
based level of behavior and the time needed to perceive signals from the display. These

parameters will provide the time estimates needed for the rule-based GOMS family of

39

Models. The operating principles in the MHP has the potential to address skill-based

behavior but they are not used in current GOMS analyses.

The Keystroke Level Model (KLM)

The KLLM is the best known in the GOMS family of models. It predicts
performance time of expert users executing familiar tasks that have been developed into
routine cognitive skills. In the Original conception, experts would need little thinking
time and their action times would be less variable than those of novices. In KLM, the
description of the user's task contains only the sequence of effective elementary
operations described in MHP without parameters reflecting the control structure like
goals and methods. In this original formulation, there is only one mental operator
(estimated to take 1.35 seconds) to account for all cognitive operations like memory
retrieval, mental preparation, etc. The model has a set of rules for when to apply a mental
operator to the keystrokes, typically in front of each cognitive unit approximated by a

command string.

The KLM as cast in our HCI framework will occupy both the rule-based and skill
based behavior spectrum. The rule-based behavior is the retrieval of unit tasks and their
associated operations. The skill-based behavior is translated into performance time for

skilled operations by the MPH model level parameters.

Currently, the KLM achieves its degree of accuracy for predicting performance
time by having some highly restrictive assumptions. First, the model only applies to
expert users. Second, the task acquisition time and evaluation time of unit tasks are not
modeled. In the GOMS models, tasks are broken down into more manageable subtasks
called unit tasks. The time to acquire and evaluate the completion of such unit tasks are
not modeled in the current models. Furthermore, there are two assumptions of the unit

task performance time as stated by the authors: (1) the execution of the unit-task is

40

assumed to be the same no matter how the unit-task is acquired: and (2) acquisition time
and execution time are assumed to be independent [pg 261 Card et al., 1983]. These two
assumptions are only reasonable when users have no problem decomposing the tasks into
unit tasks like those expert users modeled in the GOMS models. For non-expert users or
complex tasks, the execution is dependent on how easily the tasks can be decomposed

into unit tasks. Finally, the KLM model also assumes that all elementary operations must
be serially executed.

Such restrictive assumptions brought many criticisms t0 the KLM model.
However, the KLM proves promising as it allows prediction of performance without
resorting to empirical evaluation of finished products. It spearheaded the cognitve
engineering approach in HCI research and there is much further research that builds on
the KLM model. These later models extend the original KLM by examining the KLM
assumptions. The following two models extend KLM by attempting to address some of
these restrictive assumptions by explicitly modeling novice learning, parallel operations,

and memory load.

Cognitive Complexity Theory (CCT)

In the Cognitive Complexity Theory [Kieras & Polson, 1985; Polson, 1987], the
knowledge represented in the GOMS model is formalized as a production system. There
is also a representation of the device in the form of a Generalized Transition Network
(GTN). The device knowledge component has been dropped in subsequent use of CCT.
By coding the knowledge in GOMS as a production system. CCT allows quantitative
prediction of training time and transfer of training by counting the new production rules a
user needs to acquire. Kieras and Polson estimate that it takes 30 seconds to learn a new
production rule. The CCT also models explicitly the working memory for holding active

goals or subgoals. The depth of the goal stack reached during task execution is taken as

41

an indicator of the task difficulty. The use of production systems to model memory load
is promising; Lerch [1988] and Smelcer [1989] were able to use it to model the user’s

working memory load and errors in tasks involving keying financial formulas and

database query, respectively.

The main criticism of the CCT approach is that it derives its predictions solely
from the amount of knowledge but not the type or content of knowledge in the model
[Knowles, 1987]. The model thus will not be able to model the user's ability to
generalize a new command that shares a common structure with some learned command;
this new command still corresponds to a new production rule. In TAG parlance, the
model cannot account for the interface consistency issue. Also, the model does not
address how different types of subgoals , e.g., a subgoal that arise naturally due to task
decomposition versus one that arise as an artifact of having to use the interface, will
contribute differently to the memory load. Like GOMS, the subgoals in CCT are still not
a cognitive control structure but just a notation as a placeholder for the elementary

operations. Also, the feedback portion of the HCI framework is not modeled.

CCT as seen in our HCI framework is very much like the GOMS models; itisa
derivative. CCT adds the cognitive control of a working memory and models
knowledge-based behavior involved in learning new methods. What it does not address
are problem solving behaviors for exploring new commands and how subgoals are

formed.

Critical Path Method Extension to GOMS

John [1988] extended the KLM assumption that the elementary cognitive, motor,
and perceptual operations as serial. The assumption of serial operations is a reasonable
assumption in KLM to simplify the process of estimating the total time by adding all the

times of the operations in a unit-task. However, John argues that the prediction of the

42

time of highly skilled performers can be improved if this assumption is relaxed. In the
task of expert transcription typing investigated by John, the expert can be expected to
look ahead to the information for the next piece of task while still typing on the current
task. John uses Critical Path Method (CPM), a familiar tool in engineering operations
research, to model the possible parallel or cascading dependencies among the mental,

motor, and perceptual operations.

In our framework, CPM takes the same position as the KLM except that the
prediction of skill-based performance time is no longer calculated by adding up the KLM
parameters. It is now necessary to use critical path analysis to model the underlying

elementary processes to see where elementary operations overlap.

Polson and Lewis's CE+

The CE+ model [Polson & Lewis, 1990] attempts to model exploratory learning
in HCI by integrating theories from (1) the GOMS model and CCT on the representation
of procedural knowledge as productions, (2) the EXPL model on learning from examples
[Lewis, 1988], and (3) research on problem-solving processes. This is the first model that
we have reviewed so far that attempts to address knowledge-based behavior in unfamiliar

task environments and to incorporate the feedback from the system in the model.

The EXPL model was developed to account for the role of feedback in learning
procedures. The model assumes that the user engages in a causal analysis of a sequence
of user actions and system response to determine whether the response could be attributed
to the actions. The causal reasoning is accomplished by a set of simple heuristics; for

example, the identity heuristic places a causal link between action and response if both

share the same verbal element.

In the problem-solving component of CE+, a "label following" heuristic is used to

predict naive users' exploratory behavior. This heuristic states that when faced with a

43

choice among alternative actions, users will choose the action whose description overlaps
most with its goal, provided the action has not been tried unsuccessfully before. Once the
actions have proven to be successful for the goal, they will be compiled into a production

rule in the CCT fashion.

The CE+ model is in its developmental state but it is promising as it focuses on
the knowledge-based behavior not addressed by other HCI models. The current CE+
model produces descriptive guidelines for design for ease of learning but not quantitative
predictions of learning time. The immediate compilation of successful exploration into
production rules seems to suggest there is no middle ground between problem solving
behavior and skill-performance. The integration among the various components of the

models also needs further refinement.

The Planning Model

The last model we will review is a model that integrates the planning and skilled
procedure execution in HCI. Young and Simon (1987, 1988] propose that planning
processes in HCI are different from those modeled in the artificial intelligence literature
where a complete plan must be generated after searching the problem space. They
suggest that during planning in HCI, the activity of planning is interleaved with the
execution of the plans (which may be partial); and that simple, partial plans are more
appropriate than complex, detailed ones. They claim that such an approach to planning
can model behavior that spans our HCI framework spectrum, from problem solving

behavior to the smooth execution of routine methods.

Their model is similar to the GOMS model in that it is hierarchically described by
goals and operators. How the model differs from GOMS is that the decomposition of the
hierarchical goals needs not be complete. Those goals with unknown methods of

execution will not be expanded into operations. When users encounter such goals, they

44

will engage in a problem solving behavior like the users modeled in CE+. For fully

decomposed task goals, the Planning model acts like a GOMS model.

The planning model again attempts t0 Step beyond the bound of a rule-based
GOMS type model by considering knowledge-based behavior as described in our
framework. This model, like CE+, is descriptive for its present incarnation and leaves the
underlying cognitive process of the planning mechanism unspecified. Unlike CE+, it
does not suggest how search in the problem space can be carried out to find the operators

for unfamiliar tasks.

We have now reviewed the major HCI cognitive models. Almost all models
reviewed above address rule-based and skill-based behavior with the exception that the
last two models venture into investigating knowledge-based behavior. The next section
describes how the human behavior literature in general fits into our HCI framework to

reveal the gap in the HCI cognitive modeling literature.

2.3 The HCI Framework and the Human Behavior Literature

Our HCI framework reveals that the current HCI cognitive models only tap a
small portion of the available human behavior theories. These theories come from the
literature in many related fields, for example, psychology, human factors, artificial
intelligence, linguistics, etc. Figure 2.4 shows some theories from the various fields that
HCI research can draw on as seen in our HCI framework. The list of theories is not
exhaustive and we will not review those theories here. The list is just an indication of the
vast human behavior literature that HCI research can draw on. Itcan help both interface
designers and HCI researchers to frame their problem space and draw on theories from

related fields for those areas that current HCI models do not address.

Categorization
————— Method (- — — — — | Interpretation~ — — =
Specification
Pattern Recognition

Perception

Visual

Searc!
Signal Detection

0 /™

Figure 2.4 The Human Behavior Literature and the HCI Framework

Execution

Motor
Control

Skill-based

Human
Factors

In the Knowledge-based domain, we can draw from research findings in problem
solving and Al. Problem solving literature [Newell & Simon, 1972] provides us with
theories on how people use mental models, analogies, insights, etc., to arrive at novel
solutions in the HCI domain. Theories of Scripts and Plans in the Al literature [Schank &
Abelson, 1977] inform us how a user can break a long task sequence into more
manageable subtasks. Attribution theory [Kelley, 1973] can inform us how users can use
the feedback for causal reasoning to see whether a subgoal has been accomplished by a
certain method in a novel situation. Tversky and Kahneman's [1974] work on decision

theory can tell us how users might use different heuristics to tackle an unfamiliar task.

46

In the rule-based behavior domain, the Al literature provides us with expert
systems [Shapiro, 1987] and classifier systems [Holland, 1986] that can shed light on
how different methods are chosen for certain tasks. The pattern recognition literature
[Sekular & Blake. 1985] can inform us how signals are processed into signs that can
trigger a rule-based response. If HCI activities can be seen as communication between
the device and the user through an action language, then the linguistic literature, in
particular psycholinguistic literature [Slobin, 1979], can provide research findings in

sentence production and comprehension to help us assess the difficulty of forming the

action sequence specified by the method.

In the skill-based behavior domain, the human factors literature has the most to
offer. Motor control literature [Nilsen, 1991; Schmidt, 1982] will inform us how users
are affected by the physical design of devices. Signal detection theory [Swets, 1964] can
tell us how users may perceive useful feedback from background noise. The literature on
visual search [Cornsweet, 1970; Lohse, 1991] can also inform designers how to create an

interface that facilitates quick identification of relevant information.

The above discussion cannot do justice to the wealth of knowledge available that
is relevant to HCI issues. However, given the HCI framework we have developed, we
can place any literature on human behavior in our framework and see how it can be used
to describe the relevant stages or levels of HCI activities. Given this wealth of human
behavior literature, the HCI cognitive models reviewed seem to cover only a portion of

the literature and only some stages of the HCI activity cycle.

2.4 The Gap in the HCI Modeling Literature

The HCI cognitive models reviewed above, the formal grammar family and the
GOMS family of models, cover primarily rule-based and skill-based behavior in our

framework. There is certainly a need to explore more of the knowledge-based behavior.

47

Also, the feedback loop portion of the framework has not been well addressed by the HCI
models. This is not a criticism of the HCI research but an indication that there is much
room for the maturing HCI research to grow. In fact, the success of the GOMS family of
models, eépecially the success of the keystroke-level model indicates that the HCI
cognitive modeling approach is viable and that we can build on it. This is exactly what

the last two models reviewed, CE+ and the Planning Model, try to do.

We will do the same in this research by proposing a theory that builds on the
GOMS model by extending GOMS to include knowledge-based behavior. It is important
that HCI models can address non-ideal expert behavior as we have argued that (1) even
experts make mistakes; and (2) as computer applications get more varied and
complicated, the true dedicated single-application expert user will be hard to come by.
By investigating knowledge-based behavior, we will be able to show (1) how novices
learn a new piece of software; (2) how users execute a complicated sequence of actions
that are not amenable to rule-based behavior; and (3) which stages of the activities take
the longest time. We proposed to do all these by investigating the roles of subgoal

formulation as a cognitive control structure in our HCI framework.

2.5 The Roles of Subgoals in the HCI Framework

We will investigate the role of subgoals in our HCI framework as a cognitive
control structure for knowledge-based behavior. This section starts by explaining why
the subgoal structure has not been a major focus in the GOMS family of models to date.
We then expound the possible roles of subgoals in our framework. Lastly, we propose a
theory stating that a bad interface will force users to Create exuraneous subgoals that are
difficult to acquire, maintain, and verify. We will show that it is these extra subgoals and

not the number of keystrokes that account for the large differences in performance times

and errors.

48

2.5.1 The Role of Subgoals in the GOMS Model

The role of subgoals in the GOMS model is de-emphasized as GOMS only
models expert users performing routine tasks. In the review of the GOMS model, we
pointed out that goals (and subgoals) do not contribute to the time calculations as they are
used for notational purpose only since all goals and subgoals are fully expanded into their
elementary operations. Time estimation is the sum of all the fully decomposed
elementary operations time. and complex goals manipulation time is ignored. Also, the
tasks modeled have a simple action sequence for each task goal and do not require
problem solving or keeping track of complex subgoals sequence. That is, the need for

using subgoals to break down complex operation sequences in these tasks is minimal.

In CCT, subgoals have a slightly more significant role as uncompleted subgoals
are stacked in the working memory. The depth of the working memory isused as a
gauge for the difficulty of a task. The extension is promising as Smelcer [1989] and
Lerch [1988] were able to use this concept in modeling users’ errors. However, the role
of subgoals is still minimal in CCT as it is not used for modeling knowledge-based
behavior. The aspect of learning that is modeled in CCT is a rule-based model, the time
to learn is predicted by counting the number of new rules that must be learned. Subgoal

structures are not used in modeling novice learning in CCT.

The unit task is a concept in GOMS, similar to the concept of subgoals in our HCI
framework, which the authors define as a subtask that can be performed by the user
within his performance limitations. The unit task is used as a control structure such that
users have a method to execute each unit task formed. Our subgoal concept expands on
this discussion by expanding the role of the unit task to include other possible roles of
subgoals in knowledge-based behavior for cognitive control, e.g., the role as checkpoints

for problem solving, the role as a bridge between the task space and the system space, etc.

49
2.5.2 The Roles of Subgoals in the HCI Framework

The primary role of subgoals in human behavior is cognitive control. It allows the
use of limited cognitive resources to tackle difficult tasks. Human performance is bound
by the limited working memory capacity and the limited capacity to attend to one
conscious activity at one time. As such, human behavior is goal oriented and can be
characterized in terms of goals and plans [Black,Kay, & Soloway, 1987]. The plans are
the subgoals or procedures that will accomplish the task goals. Subgoals serve as check
points against which progress towards the task goal can be measured. There should be
pauses at the boundaries of these subgoals while the users evaluate what they have done
and determine what the next relevant subgoal is. In the current GOMS models, these
plans and subgoals are fully decomposed into elementary operations without much
cognitive cost. We will discuss the role of subgoals in situations where there is
substantial cognitive cost in acquiring and verifying subgoals especially when there is a

wide gap between the task space and the system space.

To Segment a Complicated Action Sequence. In our HCI framework, the
subgoals come between the task goal specification stage and the method specification
stage. When the method is fully known and simple enough to be fully decomposed
without overloading working memory, there is no need for the subgoals to act as
cognitive control. When the method is complicated and long, the subgoals will be used to
break the long action sequence into manageable subtasks where the user knows a method
for each of these subtasks and they can be performed without exceeding working memory
load. These subtasks are equivalent to the unit task in GOMS and the simple task in TAG
where there are no cognitive controls within the subtasks to accomplish the subgoals.

Subgoals allow the execution of a complicated task in the correct sequence by forming

subgoals in a corresponding sequence.

50

To allow for non-optimal problem solving behavior. Subgoals provide the
cognitive control for problem solving behavior when users do not know the exact method
for execution. Here the subgoals are planned on-line rather than retrieved like those in
the GOMS model. Subgoals provide a means to segment the task goal into many
intermediate states where the user may know the execution method or can explore the
operations to bring them to the desired intermediate states. This allows users to have
partial plans instead of complete plans to achieve a task goal. Partial planning allows
trial and error exploratory behavior when using an unfamiliar interface. The subgoals act
as checkpoints to evaluate the expected outcome of the subgoal that will bring them
closer to the task goal. The subgoals also act as checkpoints for error recovery and noting
which methods are unsuccessful for a particular subgoal [Card et al. 1983]. If a certain
method tried does not achieve the desired outcome for a subgoal, that method will not be

used again for that subgoal and an additional subgoal needs to be initiated to reverse the

outcome of the unsuccessful method.

This subgoal role of facilitating problem solving or exploratory behavior has an
important implication for interface design. To allow for easy problem solving, the
interface must provide clues or means to quickly constrain system search space so that the
user can get on the right track. For example, menu systems that provide labels that match
parts of the users' description of the task goal will facilitate the “label following”
heuristics [Polson & Lewis, 1990]. An interface should also provide obvious feedback
such that users know which state they are in and whether a subgoal has been successfully

accomplished. Also, the interface should provide many "UNDO functions” so that users
can reverse the effects of unsuccessful trial easily.
To bridge the task space and the system space. This last role of subgoals that we

will discuss has the most impact on interface design. Ina badly designed interface, the

subgoals are used by users, experts or otherwise, to bridge the gap between the task goals

51

and the allowable system actions; i.e., to bridge the gap between the task space and the
system space. This is akin to the Semantic Gulf in Norman's Action Theory {Norman,
1986]. There are two situations in which users need to create extra subgoals that are not a
direct requirement of the task but emerge as a result of having to use the interface. First,
when the task space and the system space operate on different object structures, there will
be a need to create extra subgoals to bridge the differences. For example, if the task
space operates on two dimensional objects but the system space only operates on one
dimensional objects, there will be a need for using extra subgoals in the system space to
operate on each dimension in the task space in turn. Second, when the system space does
not allow users to carry out actions in an order as conceived in the task space, extra
subgoals will be needed to buffer the out of order operations. For example, if users
always think of creating an object first before defining its dimension in the task space but
the system space requires the reverse operations, users will need an extra subgoal to
temporarily stack the subgoal of creating an object first. The third use of subgoals
already discussed is to bridge the system space and the task space by segmenting a long
task sequence. This is not necessary a design fault but just a task space artifact that a task
goal requires many steps to complete. The interface can be designed in cases such that
each subgoal state is easily accomplished and verified, or to provide higher level

operators that can accomplish a few subgoals at once.

The use of extra subgoals to bridge the task space and system space has not been
discussed much in the literature. It touches on the issue of interface consistency, but not
just within-interface consistency such as that modeled by TAG, but consistency between
how the user thinks of the task and how the system allows the user to think of the task.
The extra mapping required is the bottleneck in the HCI stages of activities especially

when the extra subgoals are difficult to acquire and to verify. It is the number of

52

extraneous subgoals, not the number of keystrokes, that makes an interface difficult to

use. This is the essence of our theory that will be verified by empirical studies.

The use of subgoals as a cognitive control structure 10 extend the GOMS model to
include knowledge-based activities will address some of the criticism of the GOMS

model. It will also build on the success of the rule-based GOMS model by extending the

model to address non-optimal knowledge-based behavior.

2.5.3 The Use of Subgoals to Address Some Unresolved HCI Issues

We can use subgoals as a cognitive control structure to address some
shortcomings of the current GOMS models. Some of these criticisms were brought up by
Olson and Olson [1990] in their review of the GOMS models and some issues were

brought up by other researchers and even Card et al. [1983], the authors of GOMS.

The planning, decision, and perceptual aspects of behavior were not modeled in
the original GOMS model [Olson & Olson, 1990]. The subgoal structure will help to
model these aspects by investigating the ease with which the interface allows the user to

formulate the subgoals and to evaluate the feedback to check the accomplishment of the

subgoals.

GOMS models only expert optimal behavior [Carroll & Campbell, 1986]; GOMS
does not model erroneous behavior [Card.Moran, & Newell, 1980]. The addition of
subgoals as control structure specifically addresses these vague issues by including
knowledge-based behavior in the analysis. Issues like exploratory learning for novice
and non-optimal expert behavior due to bad interface design can be addressed when the
subgoal structure is considered. Subgoal structure explains why errors occur and
provides a means to recover from errors. Errors can be explained by excessive memory

load, bad feedback, and an interface that does not allow one to narrow the search path to

53
find the solution quickly, i.e., the operations or methods that bring one closer to task goal

are not obvious.

It has been claimed that working memory load could be the major downfall of an
interface [Waern, 1989]. GOMS does not explicitly model memory load [Card et al.,
1983]. Itis also not clear what contributes to mental workload [Olson & Olson, 1990].

In our formulation of the role of subgoals in the HCI framework, working memory load
grows with the extra subgoals necessary to overcome unnatural mapping between the task
space and the system space. The memory overload occurs when many uncompleted

subgoals must be kept in the working memory.

KILM assumes that acquisition time and execution time of unit tasks are
independent. Card et al. [1983] state that reducing execution time by making the
command language more efficient does not affect acquisition time. However, our
subgoal formulation argues that if an interface allows formation of a subgoal structure

that reflects the task structure, the subgoal (unit task in the GOMS context) acquisition

time will be greatly reduced.

Green [1988] points out that current GOMS cannot explain why a consistent
interface will translate to better performance. Green’s TAG only models internal task
consistency. With the notion of subgoals, we can model both within interface
consistency and external-to-internal task mapping consistency. The latter is even more
important as it models how easily the user can translate his intention into allowable
system actions. The consistency of the subgoal structure to the task structure is a
measure of the external-to-internal task mapping consistency, the semantic gulf of the
interface in the Action Theory. Norman explains what semantic guif is in his Action

Theory and our formulation of the subgoal structure explains the cognitive mechanism

that caused this semantic gulf.

54

GOMS does not explain why small differences in interfaces often cause large
differences in usability even if the number of key strokes remains about the same [Carroll
& Campbell, 1986]. The current keystroke level model seriously underestimates the
actual tirm;, [Allen & Scerbo, 1983]. The GOMS model focuses on quantitative tradeoffs
and thus misses out on the many discontinuities in usability effects. Our theory explains
these by stating that although the number of keystrokes may remain about the same, some
interfaces will force users to use extra subgoals to overcome the bad interface. The
acquisition and verification of these extra subgoals answer the question on which
activities take the longest time. It is the time for planning, acquiring and verifying these

extra and unnatural subgoals that overwhelms the keystroke tme. We will illustrate this

with two empirical studies.

2.6 Proposed Theory and Empirical Validation

This research has done the following in arriving at the theory of the role of
subgoals in mapping external task space to internal system space. We have developed an
HCI framework that imposes a cognitive architecture on the stages of HCI activities. The
framework is used to survey the HCI literature and we find that there is a need to
investigate knowledge-based behavior. We propose to investigate the subgoal structure
as a cognitive control mechanism that can explain many knowledge-based behaviors like
learning, erroneous behavior, etc. The rest of this research will investigate the role of the

subgoals as a bridge between the external task space and the internal task space which has

not been investigated in the literature.

2.6.1 The Subgoals as Bridge between the Task Space and System Space

We have explained in the previous section how subgoals can function as a bridge

between the task goal and the eventual action sequence needed to achieve this task goal.

55

We will summarize here. (1) When the action sequence required to accomplish the task
goal is complex and long, subgoals serve as an intermediate check points to segment the
long sequence so that each segment has a corresponding method and can be performed
within working memory restrictions. (2) When the task space and system space operate
on different objects, extraneous subgoals will be needed to map from one space to the
other. (3) When the system space does not allow the user to execute the action sequence

conceived in the task space, extra subgoals will be needed to stack and monitor the out of
order operations.

Our theory then claims that it is the number of these extra subgoals created by the
need to bridge the system space and the task space that can account for qualitative
differences between two interfaces. Extra subgoals will explain why two interfaces that
produce nearly equal numbers of keystrokes can produce very different performance
times and error rates. This discontinuity in usability effects is not modeled by the current
KLM. The difference in the extra subgoals needed to overcome a bad interface can also
account for the cause of the memory load. Finally, the acquisition and verification of
these extraneous and unnatural subgoals account for the largest portion of the
performance times. If the acquisition and verification are not accounted for in a KLM,
the time prediction will vastly underestimate the actual performance time. On the other
hand, if the acquisition and verification of subgoals are to be ignored like in the current
KLM, the interface should be designed to reduce unnatural mapping, thus reducing the
extra subgoals, eliminating the long pauses for their acquisition and verification. Also,
with an interface that feels ‘natural’ to users where the objects manipulated and action
sequence are those conceived in the task space, the need for planning (acquiring unnatural
subgoals) and verification will be greatly reduced. The next section outlines two

empirical studies that illustrate the above theory.

56

2.6.2 The Empirical Studies to Validate the Roles of Subgoals

The two empirical studies will show that the bottle neck of task execution occurs
when the interface does not allow direct mapping of the task goal into corresponding
subgoals that reflect how the user thinks of the task in terms of the objects to operate on
or in terms of the order of operations. These unnatural mappings cause formulation of
extra subgoals that results in long performance time and errors. The following

paragraphs describe the objective of the two experiments and the full details of the

experiments are in the following two chapters.

The Formula Editor Experiment

In the formula editor experiment, subjects are given the task of transcribing
algebraic formulas into a linear string using two editors. One editor, the linear editor,
operates on objects that are linear character strings like those in a text editor. The other
editor, the semantic editor, operates on structured objects of <operant><operator>
<operant> which reflects the object structure of the formula. The text editor will cause
users to adopt many extra subgoals to map from the formula structure to the string
structure. These extra subgoals are difficult to acquire. to verify. and they accumulate
quickly causing memory overload leading to long performance time and errors. The
semantic editor, as compared to the text editor, though it produces almost identical
numbers of keystrokes in the final action sequence, poses few cognitive problems to the
users as the subgoal structure reflects the task goal of recursively defining the operants.
The subgoals in the semantic editor space do not accumulate like those in the text editor

space as they are not recursive and are self-terminating. They do not contribute to the
memory load.

This experiment illustrates why similar interfaces may produce very different

subgoal structures thus affecting the performance time drastically. Also, it illustrates

57
tasks that demand excessive cognitive resources may not become skilled through practice.

It also illustrates that an interface that allows an efficient executon affects the task

acquisition time, thus violating the KLM model’s assumption.

The Lotus Menu Experiment

In the Lotus menu traversal experiment, novice subjects learn how to execute
simple spreadsheet tasks by issuing commands through the menu. The subjects see one
of two versions of the menus and one of two versions of the instructions. The new menu
structure as compared to the original Lotus menu has a consistent structure in terms of
always having the spreadsheet objects at the first level and the possible operations on the
objects at the second level of the menu. This consistent structure allows users to form a
consistent subgoal structure of always looking for the object of interest first followed by
the action of interest. The two versions of the instructions further constrain whether users
can form this consistent subgoal structure by either describing the object first or the
action first. We expect that when there is a mismatch between how the users think of the
task (the instruction) and how the system orders the commands (the structure of the
menu), an extra subgoals will need to be created to buffer the out of order command.

These extra subgoals will again lengthen performance time and increase error rate.

The lotus menu experiment shows that an interface should not only be internally
consistent, it should also be consistent with how users decompose the task goals into
action subgoals. It illustrates that the task acquisition time and the task execution time
are not independent as suggested by the KLM model’s assumption. The interface that
allows users to execute their task as conceived in the task space will result in better

performance. The next two chapters describe these two experiments in detail.

CHAPTER 3
THE FORMULA EDITOR EXPERIMENT

In this chapter, we will use a formula entry task to illustrate the subgoal theory to
show the importance of task-system match to eliminate extraneous subgoals. It will show
how an editor that enters mathematical formula as a linear string forces users to break
down the task of formula entry into a series of short and unnatural subgoals as the task
space and system space operate on different objects. The time for cognitive activities
overwhelms the keystroke time thus making the GOMS keystroke level model prediction
inaccurate. We will then show how a simple redesign of the editor eliminates much of

the cognitive bottleneck due to the difficulties in acquiring and evaluating the extraneous
subgoals.

This chapter will start with the description of the formula entry task, the formula
structure, and the cognitive processes involved in entering formulas linearly. A pilot
study and its results are then presented to verify that users face difficulties when keying
in formulas linearly. The chapter next presents a cognitive model that accounts for these
difficulties. This chapter concludes by describing an improved editor that reduces some

of these difficulties and an experiment and its results that compares the two editors’ ease

of use.

3.1 The Formula Entry Task Using a Linear Editor

The task of keying in formulas using a plain text editor is common in spreadsheet

applications. Users need to translate the formula into a linear string as they key it in. For

58

59

example, the formula (A+B)* S}-{B when keyed in as a linear string becomes

(A+B)*(H/(S-B)).

Formulas belong to a class of languages called functional languages which also
includes LISP statements, PostScripts language, etc. Ina functional language,
parentheses are used to delimit the semantic units in a statement consisting of embedded
functional statements. The high cognitive demand when keying in such language
statements on computers using a linear text editor is a consequence of having to keep
track of the multilevel embedded statements and parentheses. Users need to employ extra
subgoals to translate the hierarchical structure of the functional language statement into a
linear string. Users need to plan for open parentheses, remember where to close the
parentheses, and parse the statement to keep track of the level that they are in. Complex
statements often lead to overextended cognitive resources, long pauses, and errors when

keyed in.

Keying formulas is chosen as the task for cognitive modeling in our experiment as
it is a common task, especially for spreadsheet users and programmers. Analyzing the
cognitive difficulties in using a functional language is important since past research have
revealed that there are many errors in spreadsheet models’ formulas [Brown & Gould
1987: Ditlea 1987] and in LISP statements {Anderson & Jeffries, 1985]. Since formulas
are representative of functional languages, the discussions in this chapter can be
generalized to other functional languages. Although there are editors that display
formulas in a typeset format on graphics workstations, most editors still require users to
transcribe formulas into a linear format when keying in and display the keyed in formulas
in a linear format. Also, linear editors are the standard tools for editing other functional
languages. We thus choose to analyze the cognitive process of using such a linear editor
interface when keying in formulas. Once we understand the cognitive process, we can

then design a better interface for keying in formulas or functional language statements.

60

We choose to analyze only formulas with simple binary operators: plus, minus,
division. multiplication and power. We ignore more complex operators like integration,
summation and differentiation to keep the formulas simple. This will not lead to any loss
of generality or power for our discussion as the purpose of the research is not to design a
more powerful formula editor but to illustrate the difficulties of managing the extra
subgoals when there is a task-system mismatch. Formulas with simple operators will be

sufficient to illustrate the cognitive difficulties of the formula entry task.

To understand the cognitive difficulties of formula entry, we first need to

understand the structure of formulas. The next section presents a formal analysis of the

structure and meaning of formulas.

3.2 The Structure and Meaning of Formulas

We need to understand the structure and meaning of formulas to understand the
difficulties users have when they key in formulas before we can model the underlying
cognitive process. Although a formula is just a string of symbols when keyed in, it has an
underlying structure. As Figure 3.1 below shows, a formula is built up recursively from
an operator joining two components. Each component is an operant and the operant itself

can be a formula, i.e., another operator joining two other operants.

In Figure 3.1, <O> (as in object) is used for operant and <A> (as in action) is used
for operator. Each of these <O><A><0O> expressions in the task space constitutes a
“semantic unit” in a formula as it can be a meaningful constituent of a higher level
formula. Users can think of the <O><A><O> sequence as an action upon two objects.
The parentheses around the <O><A><O> units make them into a higher level operant.

We will call such operants with parentheses around them complex operants.

Parentheses are used in formulas to delimit component boundaries. They are

essential in a linearly displayed formula to delimit the semantic units. They are also used

61

to change the precedence of operators by stating the semantic units explicitly. For
example, 4*¥(2+3) and 4*2+3 yield different results. The parentheses around 2+3 in the
first example made it into a semantic unit and it has to be evaluated first. Consequently, a
pair of parentheses is a surface structure that indicates the formula within the pair of

parentheses is at a lower level and should be treated as an operant for the higher level

formula.

(A + B) = (H / (S - B))
] 1 1 : : : : : :
o <
Lo i o FORMULA
] i i
Lo | L (FORMULA)

<0> <A><0> ' <Q> <A> <0>
o /S ! Tee \ ="

S ! Ssoy .-

‘ 1 ~ -
FORI\EIULA i FORJ!\/IULA

(FORMULA) ! (FORMULA)
' 1
<(I)> <A> <Q>
~ ! o’ <
N - -~ ~ : PR .
S : - o’
FORMULA
Figure 3.1 The Recursive Structure of a Formula

Based on the recursive structure of formulas in Figure 3.1, the meaning and
structure of formulas is succinctly defined in Figure 3.2 as a formal grammar in BNF
notation. We again see from the grammar that parentheses are symbols that make a
formula into an operant. The parentheses mark the boundary of a ‘semantically’
complete unit of formula and make it into an operant. A formula is thus built up

recursively with nested formulas.

It is this nested structure of formulas that create cognitive difficulties when users

face the task of either keying a formula linearly or parsing a linear formula visually to

62

understand its structure. The next section discusses what these difficulties are and users'

strategies when keying formulas to alleviate the difficultes.

<Formula> := <Operant><Operator><Operant>

<Operant> := < (Formula)>|< Constant >|< Variable >

<Operator> := + |-|*|* | /

Figure 3.2 A Formal Grammar for the Meaning of a Formula

3.3 The Cognitive Process of the Formula Entry Task

3.3.1 The Cognitive Resource Limitation

The embedded structure of formulas creates cognitive difficulties for users when
keying a complex formula in a linearly. To enter a long and complex formula linearly
and not exceed his cognitive resources, the user needs to break the goal of entering the
formula into subgoals of entering one portion of the formula at a time so that each
subgoal can be performed within working memory limits. However, the user needs extra
subgoals to translate the <O><A><0> semantic structure in the task space to the linear
character string structure in the system space. These extra subgoals arise as the user
cannot think in terms of the object structure in the task space. Extra subgoals in the form
of opening and closing parentheses are needed to bridge the semantic gaps. The
cognitive difficulties arise from the planning, keeping track of, and evaluation for

completion of such subgoals that do not reflect the task structure.

When keying in highly nested formulas, the cognitive resource limitation stems
from the extraneous subgoals that result in excessive working memory load (a) to plan

for the opening parentheses needed; (b) to keep track of nested subgoals of completing a

63

portion of the formula by balancing parentheses; and (c) to parse the linear string to
mentally translate it back into its hierarchical nested structure to evaluate whether the
subgoals are successfully completed. Looking at such a linear presentation of multilevel
formula creates both high perceptual load and working memory load. It is demanding to
parse the nested semantic units displayed linearly on the screen as it requires lots of

working memory capacity to reconstruct mentally the semantic units by tracking the

corresponding pairs of parentheses visually.

3.3.2 The Different Strategies to Enter Formulas

To alleviate such resource limitations, users may adopt different strategies to key
in formulas linearly. Such different strategies will not totally alleviate the cognitive
difficulties but will create different tradeoffs among the needs for planning, tracking, and
evaluation of subgoals. Different strategies will impose different subgoal structures to
break the task into different sequences of subtasks. There are three strategies users could
adopt: top-down, bottom-up or left-to-right. Figure 3.3 depicts the steps involved in

creating a simple formula using different strategies.

The Top-Down and Bottom-Up Strategies. Using these two strategies, users set
subgoals of entering complete semantic units (O-A-O) before proceeding to the next level
of embedded formula. Figure 3.3 shows that there will be lots of navigation within the
formula using the left and right cursors keys when using these two strategies. In a top-
down approach, users start at the top level keying in the top most level O-A-O and
expand complex operants one level at a time to the lowest level. Each complex operant is
created by first creating a pair of parentheses and then filling in the formula between the
parentheses when the user is at the next level of expansion. It is just the opposite in the

bottom-up approach. Users start at the deepest level, key in the deepest level O-A-O and

64

then proceed to the next level up by placing a pair of parentheses around the lower level

O-A-O semantic units making them into complex operants.

The formula, (A+B)*§§ in Figure 3.1, is used to illustrate the three different

strategies.

A top-down approach:

Current Screen display Next k ressed
0*0

0*0 — — «— «— A+B

(A+B)*() — - — H/()

(A+B)*(H/()) «~ S-B

(A+B)*(H/(S-B))

A bottom-up approach:

Current Screen display Next key(s) pressed
S-B
S-B — (o)« H
H/(S-B) «~ « A+B
A+B H/(S-B) (o) (Do)
(A+B)*(H/(S-B))

A left-to-right approach

(A+B)*(remember one parenthesis to close and position
(A+B)*(H/(remember another parenthesis to close
(A+B)*(H/(S-B) close second parenthesis

(A+B)*(H/(S-B)) close first parenthesis

Figure 3.3 The Three Strategies for Keying Linear Formulas

These two strategies attempt to operate on the semantic structure of <O><A><0>
despite the linear structure of the task space. These strategies will ensure that there are no
unbalanced parentheses but will require many cursor movements to get to the desired

locations to insert parentheses around formula or to insert formulas within a pair of

65

parentheses. Moving within the formulas not only creates extra cursor movements but
also will impose high memory and perceptual load. By navigating within the formula, it
is difficult for the user to keep track of the formula level the user is at and has to
constantly parse the partially completed linear formula mentally into a hierarchical
structure to insert the nested formulas or the parentheses at the right places. Users may
not use these two strategies due to the excessive jumping around causing high perceptual
and memory load. However, the main reason that users may not adopt these two
strategies is that the operators and objects in the system space (the linear editor) color the

way users think of the task. The left-to-right nature of the editor induces users to tackle

the task of formula entry in a left-to-right fashion.

The Left-to-right Strategy. In this strategy, users y to proceed in a strictly left-
to-right fashion by translating the nested hierarchical structure of the formula into a linear
string as the formula is keyed in. As the users key in the formula, they will need to plan
for extra subgoals to see where to open parentheses, remember where and when to close
parentheses, and to evaluate whether the linear formula is correctly constructed. Thus the

subgoals in this strategy are not so much creating O-A-O sequences but are opening and

balancing parentheses.

This strategy is economical on keystrokes because it does not require moving
around but imposes a high memory load to keep track of unbalanced parentheses. Also,
there is a high cognitive load to translate the hierarchical formula into a linear string on
the fly. If a formula is highly embedded, it will be impossible to keep track of all the
uncompleted subgoals of closing parentheses because simultaneously, the working
memory is being used to parse the formula into a linear string to know the right places for
the open and closing parentheses. Due to this high memory load, we postulate that users
will forget to open and close parentheses. However, if while entering the formula the

user feels that the formula is not balanced, the user can rescan the formula to check

66

whether closing parenthesis is needed or backtrack to insert forgotten opening
parenthesis. The checking for unbalanced parentheses will take a long time because the

user again needs to translate the linear string into a hierarchical structure mentally.

The left-to-right strategy is demanding in terms of the cognitive resources but
users may still prefer this strategy as this is how a plain editor is used in normal text
processing situations. Text is usually entered in a left-to-right fashion. Users may be
constrained by this inner system space and proceed in a left-to-right fashion when using

the plain text editor to enter the formulas.

Besides using one of the above three strategies, users can use a hybrid of the
above three strategies as none of the strategies is ideal. There are tradeoffs among the
number of extra keystrokes, memory load, and the need to check for the correctness for
the different strategies for keying formulas. We use the following pilot study to
investigate what strategies subjects generally adopt when they are required to enter a
formula using a linear editor. It also will validate the claim that users will face
difficulties when keying in formulas linearly. If subjects adopt the same strategy, we can
then model the cognitive difficulties using a cognitive model and see whether it could

predict the cognitive difficulties revealed through error positions and long pauses in the

keystroke pattern.

3.4 The Pilot Study

The Objective

The purpose of the experiment is to understand the cognitive process involved in
keying in formulas in a linear format. The outcome of the experiment will reveal which
of the three strategies subjects adopt. The keystroke timing and error data should help us

understand the difficulties users face when using a linear editor to key in formulas. A

67

cognitive model of the formula keying process can then be developed and a new formula

editor will then be designed to address specifically the difficulties revealed in the model.

The Task-

Subjects were required to use a linear editor to directly key in formulas presented
one at a time on 3x5 cards. Numbers instead of alphabetical names were used as operants
in the formulas to minimize the effect of different typing speed. Figure 3.4 presents two
examples of such formulas. We chose a transcription task here rather than a formula
composition task (where word problems are presented and subjects are required to key in
the resulting formulas) because the composition task would add problem reading time
and problem solving time to the time due purely to subgoal formulation, tracking, and

evaluation.

The level of complexity of the formulas used in the experiment range from two to

four levels of embedded parentheses. The range of complexity is reasonable and
representative of functional languages. In other functional language like LISP, there can
be an even higher level of embedding. Examples of two level and four level embedded

formulas are ((2+4)*3)/4 and ((((1+2)*3)"4)/5)/(2+3) respectively.

5
2+3*{(2_;é} +z}
2

3
2*{ 1+2+(4+5

2
1+(2*3)

Figure 3.4 Examples of Formulas Used in Experiment

To encourage users to employ different strategies in entering formulas, four

different cursor movements keys were provided. Besides the usual single step left and

68

right arrow keys, we provide <eol> (end-of-line) and <sol> (start-of-line) to help users
move quickly within the formula. These keys provide an easy way for users to adopt the
top-down or the bottom-up approach instead of a left-to-right approach in keying in

formulas.

The Formula Chunking Task

At the end of the experiment, subjects were also asked to circle chunks in
formulas that they felt were complete semantic units. They did this task for 10 formulas
on a sheet similar in complexity to those used in the experiment. Five of the formulas
were presented in the same typeset format as those on the cards and the remaining five

were presented linearly as displayed on the screen. The formulas presented alternate

between the two formats.

The Equipment

An IBM PC was set up with an IBM's keysave program running in the
background of a word processor (Final Word IT) to collect keystroke timing. The keysave
program has a resolution of 17 milliseconds. Since we are interested in the cognitive
process but not the typing speed of subjects, we had to minimize the effects due to
different typing speed and familiarity with keyboard. Consequently, we programmed the
keyboard such that subjects only needed to use the keypad portion of the keyboard and
with only one hand. This avoided the problem of subjects’ spending time in searching for
seldom-used keys, like the operators and parentheses. Also, only the numbers 1 to 6 were
used as variables to avoid typing alphabetical variable names. Figure 3.5 depicts the
keyboard mapping. Labeled color-key stickers were placed over the keypad to show the
key mapping. The stickers were color-coded to denote different functions of the keys,

i.e., operators, operants and cursor movement keys. In addition, to minimize distractions,

69

we programmed the word processor to show only one line of text on the screen. Every

formula used in the experiment fit on a single line when keyed in.

Delete
eol | sol | <=} =™

* / -

start >
4 S 6 -
I 2 3

end ()

Figure 3.5 Keyboard for Formula Entry Using the Linear Editor

The Subjects

The subjects were five PhD students and two faculty members working in the
Human-Computer Interaction Laboratory at the University of Michigan. Since all the
subjects have advanced degrees in scientific fields, it is reasonable to assume that they

were familiar with formulas.

Instructions

The experimenter read the instructions (see Appendix A), gave a tour of the
keyboard to the subjects and answered questions subjects had. Subjects were told to

proceed as accurately and as quickly as possible but they were not told to use any specific

strategy when they typed in the formulas.

70

Procedure

The whole experiment took about 40 minutes. Subjects practiced with a set of ten
warm-up formulas to become familiar with the experimental procedure. In the actual data
collection phase, subjects had to key in 10 formulas presented one at a time on 3x5 cards.
Appendix B gives a complete listing of the 10 practice and 10 actual formulas used in the
experiments. After the session, subjects performed the formula chunking task on 10
different formulas. To balance the order-effect, half the subjects keyed in the formulas in

one order, and the other half did it in the reverse order. The formulas with different
complexity were randomly distributed.

Subjects had to press the <start> key before looking at a card and had to press the
<end> key when they were done keying in the formula. The <start> and <end> key
provided a time stamp for analyzing the task acquisition time and checking time for each
formula. The experimenter left the subjects alone to key in the formulas after the practice
trials in order not to create any demand effects. The keystroke time stamp file and the file

that contained the completed formulas allowed us to analyze both the errors committed

and the time required to key in each formula.

3.5 Results of the Pilot Study

We first present the results of the formula chunking task and the strategy adopted
by users to key in formulas. The error rates and keystroke timing are then analyzed to
help us develop a cognitive model for the process of keying formulas linearly. The errors
and keystroke times are not analyzed in detail but are only used to help us understand the
difficulties. Detailed analysis is performed on the results of the actual experiment

proposed later in this chapter.

71

The Formula Chunking Task

Subjects did not circle all the semantic units in the formulas. They did circle as
many units as they could before it got too cluttered (Appendix C gives an example of a
subject’s circled formula sheet). The chunks left out were random and did not correlate
with the types of errors when entering the formulas using the linear editor. No subjects
made even a single error in chunking semantic units in the 10 formulas regardless of the
format presented to them. They recognized that formulas are made up of formulas
(complex operants) recursively. The results showed that subjects do not treat formulas,
even when presented linearly, just as a string of symbols, but understand the underlying

structure of formulas.

Strategy Adopted When Keying Formulas

The keystrokes captured revealed that all subjects adopted a left-to-right strategy
in keying the formula. Subjects would mentally parse the formula into a linear format as
they keyed in the formula to avoid using cursor keys as much as possible. Although
cursor movement keys were provided, no subjects employed a top-down or a bottom-up
strategy. Subjects backtracked only when they realized that they had forgotten to insert
an open parenthesis. Such backtracking was not preplanned as it would be in a bottom-

up approach; it appeared to serve as error recovery since there were long pauses before

the backtracking.

Although the grammar for the formula depicts that working with a top-down or
bottom-up strategy is more efficient, subjects were not willing or able to do so. They
were artificially constrained by the linear editor system space imposed on them. They did
not break the formula entry tasks into subgoals of completing semantic units but instead
used subgoals of opening and closing parentheses to bridge the task-system space

mismatch so that they could proceed in a left-to-right fashion.

72

The left-to-right strategy will overextend the working memory for highly nested
formulas as there will be too many subgoals of closing parentheses pending. Also, these
subgoals do not match the task goal structure of recursively creating O-A-O structures.

The subgoals are difficult to acquire, monitor and validate. We expected to see many

errors and long pauses for these formulas.

Error Rate and Types of Error

There were errors in 30 of the 70 formulas that the seven subjects (10 for each
subjects) keyed in. The high error rates reflects that keying formulas linearly is a
cognitively demanding task. Among the erroneous formulas, 37% had multiple errors in
them. Of all the errors, 94% involve missing parentheses or misplaced parentheses, 16%
of the errors involve semantic errors where parentheses are balanced but are misplaced in
a way that completely changes the meaning of the formulas. These semantic errors
reflect the perceptual load problem and memory load problem of parsing out the semantic
units in a linearly presented formula. Users can count parentheses to ensure that they are
balanced but syntactically correct formulas are not necessarily semantically correct.
There are almost equal numbers of errors involving opening and closing parentheses.
This indicates that balancing parentheses is not the main problem here but rather

translating the hierarchical structure to a linear structure.

Error Positions

In the results, the positions of the errors where parentheses were either missing or
misplaced revealed that memory load was a problem. Generally, when there were more
levels of embedded formulas within a pair of parentheses, it was more likely that the
opening or (and) the closing parenthesis was misplaced or missing. Subjects had
difficulties in parsing the formulas to plan for subgoals to open parentheses and in

remembering the subgoals to balance parentheses.

73

Figure 3.6 depicts the positions and the number of errors at these positions in a
bar chart. When there was only one embedded formula, e.g., (3+5), subjects made no
errors in keying the parentheses. When there were four levels of embedded formulas,

e.g., (1%(2A(5%(2/(3-2)))), subjects made a total of 19 errors keying the parentheses.

The Keystroke Data

We expect that the keystroke time will be short since subjects made so many
mistakes. In fact, there were many long pauses over 5 seconds. This implies that
subjects had difficulty ensuring that the formulas were correctly keyed in despite
spending a long time plarning for open parentheses and checking for correctness of
closing parentheses. The difficulty arises from the need to use extra subgoals to translate

from the <O><A><0> formula structure to the linear string structure.

The keystroke time pattern will reveal the subgoal structure adopted by the users.
We expect long pauses to occur before and after each subgoal for subgoal acquisition and
evaluation. The Keystroke Level Model’s parameters should help us interpret our data.
We learned from the keystroke level model parameters that the time (k) for typing a
single character range from .08 seconds (fastest typist) to 1.20 seconds (unfamiliar with
keyboard). The mental preparation time (M) is about 1.35 seconds. Since subjects only
need to use a small keypad, we do not k to exceed 0.5 seconds. Consequently, the
keystroke level model parameters cannot account for the keystrokes that take more than
about two seconds. We will use this time as a guide and imply that any longer keystroke
time will include either task acquisition or evaluation, activities that involve demanding

cognitive activities like scanning and parsing the formula.
A subgoal leading to a subtask is then taken as a sequence of keystrokes that

contain only M or k without any other cognitive activities. The subtask here is equivalent

to the unit task in the GOMS model. Once there is cognitive activity other than mental

74

preparation (M), the users have created a new subgoal to keep the subtask performance
within their cognitive resource limitagon. During a subgoal for keying formulas, the
users look at the formula presented on the card, compose and remember the next few
keystrokes. to be keyed in that can be kept in working memory, then key in a burst as

reflected by the pure keystroke time. The subgoals formulated will help us understand

the difficulties users face when keying in formulas.

§| 207
= 3
8 .
-] 15
= 3
£ .
= 10 =7
w -
s E
o

P-4 5 .
E -
= 0

| 2 3 4

No of levels of embedded formulas within parenthesis

Figure 3.6 The Number of Errors at Parenthesis’ Locations with
Different Levels of Embedded F ormulas.

Cognitive activities occur at the boundaries of subgoals. Before executing such
subtasks, there is the task acquisition; and after that, there is task evaluation. Task
acquisition time can be long when the users face a complex operant. They have to decide

whether a parenthesis is needed and if so. they have to parse the formula on the card then

decide and remember where the closing parenthesis should go. Such pauses are evident
in our data when there is an open parenthesis.

Task evaluation time is reflected as long pauses after the subtask. Such pauses are

unusually long when the users cannot remember where to insert the close parenthesis and

have to parse the displayed formula to check for correctness. The checking time is as

75

high as 24.22 seconds in our results. This time is much higher than the scan time
parameter of 2.87 seconds Olson and Nilsen [1988] found in their formula keying task.
Their scan time is for locating the coordinates of the variables; whereas our scan time is
to parse for the semantic units of a formula. The latter is a much more cognitively

demanding task as it often exceeds the working memory limit.

The keystroke data for the 10 formulas that the subjects keyed in exhibits the
same irregular pattern of long pauses. The time for individual keystroke range froma
low of 0.22 seconds to a high of 24.22 seconds, a factor of more than 100. The locations
of the long pauses are generally those where an open parenthesis is needed to start a
complex operant and where there is a closing parenthesis needed to complete a complex
operant. However, subjects do not always plan before keying. Some prefer to plan for a
long time then press the keystroke; some prefer to quickly key in the keystroke then
spend a long time in checking. Thus, the pause does not increase with the level of
embedding. The average time to open a parenthesis is 3.57 seconds and the average time
to close a parenthesis is 3.77 seconds. The average keystroke time for an operator is 1.39
seconds and is 1.43 seconds for a variable. Subjects spent more time in opening and
closing parentheses than typing variables or operators. Since the times to key parentheses

are more than two seconds, they have to include planning time and evaluation time.

These frequent long pauses indicate that when faced with cognitive difficulties of
parsing and scanning to translate the different objects manipulated in the task and system
space, subjects were forced to adopt subgoals that had only a single keystroke. Such
subgoal of opening or closing parenthesis is short, unnatural, and does not confirm to the

<0><A><0> structure for formula entry.
The only time the subjects could adopt subgoals that are meaningful was when

they were keying in sequence of <O><A><0> with both operant being simple, e.g., 1+2,

4+5 and 2*3. These clusters of three keystrokes are obvious subgoals not only as

76

reflected by the keystroke timing exhibited in the results, but also as defined by the
grammar and intuitive reasoning. They are short chunks of three elements that can be
kept in working memory; they only have simple operants that need no cognitive

activities for checking and planning; and they each form a complete semantic unit in the

formula.

Discussion of Pilot Study Results

The long pauses in the keystroke data overwhelm the keystroke time thus making
prediction of a keystroke-level model inaccurate and unusable for keying formulas
linearly. These long pauses, caused by the difficulties in acquiring and verifying the extra

subgoals, are not modeled by the skill-based and rule-based GOMS model.

The error pattern fits with the findings from a series of experiments conducted by
Anderson and Jeffries [1985] to investigate novice LISP errors. In their experiments,
subjects evaluated highly embedded LISP statements. They found that subjects’ errors
seemed to result from slips rather than misconception. Our results from the chunking
task revealed our subjects also did not have misconception of formulas. They attributed
the slips to loss of information in working memory when parsing the LISP statements.
We also attribute errors to working memory overload due to parsing and remembering.
Also, they found that in writing LISP expressions, most mistakes involved errors in
parenthesization and that these errors increased with the level of embedding. Most of the
parenthesis errors produced semantic errors. Our results reflect the same pattern but we
have fewer semantic errors in comparison. The reason we have more Syntactic errors
could be that the parentheses in our single character variable formula are more cluttered
compared to those in LISP statements. When there are too many opening or closing

parentheses cluttered together, it is very difficult to visually parse the formula into a

hierarchical structure and check for its correctness.

77

The error pattern and keystroke timing obtained in the pilot study confirm our
hypothesis that keying formula linearly is a cognitively demanding task. We will next
model the cognitive processes and difficulties people have when keying formulas

linearly.

3.6 A Cognitive Process Model for Keying F ormulas Linearly

We develop a cognitive model that formally describes the left-to-right strategy of
the users and succinctly predicts the cognitive bottleneck where there are likely to be long
pauses or errors. The model also will reveal the unnatural subgoals adopted by the users.
The model, depicted in Figure 3.7, is written in NGOMSL notation [Kieras, 1988], an
English like description of a GOMS model. Figure 3.8 depicts the same model in a
schematic diagram. Note that in Figure 3.8 there are many cognitive operators (those in

round-corner rectangles) that take a long time to perform and are error prone.

In the model, the user starts with a top level goal of entering the formula (line A
in Figure 3.7). The user then proceeds in a left-to-right fashion and tries to type in the
two operants (Al and A3). If the operant is complex, he invokes Method C to enter the
operant by scanning the formula to see where the closing parenthesis is needed (D1),
retain that position in memory (D2) and retain that a closing parenthesis is needed (D3).
The user then proceeds to invoke another goal to enter the embedded formula within the
complex operant (C2). This is where the recursive structure of the formulas will cause
problems for the users as there will be many uncompleted subgoals stacking up in the
working memory. This will exceed the users’ working memory limit and users will have
to rescan the formula to recover their position (G). Users will need to rescan the linear
formula to check whether their subgoals have been accomplished. Due to memory load,

users almost always forget their uncompleted subgoals but will constantly rescan the

formula to reconstruct the goal sequence.

78

Cognitive Model for Linear Editor Formula Entry Task

A. Method to accomplish goal of entering formula
1. Accomplish the goal of entering operant

2. Type Operator

3. Accomplish the goal of entering operant

4. Validate that the formula is balanced and correct
5. Report Goal Accomplished

B. Selection rule for the goal of entering operant
1. If the operant is simple, then type the variable

2.

If the operant is complex, then accomplish the goal of entering complex
operant

C. Method to accomplish the goal of entering complex operant
Accomplish the goal of opening parenthesis
Accomplish the goal of entering formula
Accomplish the goal of closing parenthesis
Report goal accomplished

1

2

3

4

D. Method to accomplish the goal of opening parenthesis

1. Scan formula and decide where closing parenthesis is needed
2. Retain the position of closing parenthesis

3. Retain that a closing parenthesis is needed

4. Type an open parenthesis

5. Report goal accomplished

E.
1.
2.

Selection rule for the goal of closing parenthesis
If memory not overloaded, accomplish goal of typing closed parenthesis
If memory overloaded but suspect unbalanced parentheses, accomplish goal
of position recovery

F. Method to accomplish the goal of typing closed parenthesis

Type a closed parenthesis
Report goal accomplished

1.
2.
G. Method to accomplish the goal of position recovery
1. Rescan formula to see whether closing parenthesis needed
2. If yes, type a closed parenthesis
3. Repor goal accomplished

Figure 3.7. A Cognitive Model for Using the Linear Editor

The model reveals that the subgoals users employ are small and semantically

meaningless. They are opening parenthesis, closing parenthesis, and recovering position.

79

Such unit tasks are often down to only one keystroke. This will make the unaltered
keystroke level-model unhelpful since the subgoal acquisition time overwhelms the

keystroke time.

A
Enter Formuiq
o ’
Al /A2 Al
Enter Operant] O)g:m Enter Operant

Enter
Complex
Operant
....»
Closing
Positio
Legend:
] Goal/Subgoai C3

Closn.

o Operatons
O Decision

() Pranning/Monitoring/
~ Validating

Figure 3.8 A Schematic Diagram for Using the Linear Formula Editor

From the psychology literature, we know that there is a limited capacity to our working
memory [Miller 1956; Waugh and Norman 1965]. In our cognitive model, working
memory is used to hold the active productions, the uncompleted subgoals, and for

mentally constructing the semantic units when visually parsing the formula. The

80

recursive nature of formulas loads the working memory rapidly with the subgoals of
completing complex operants with right parentheses as the level of embedding increases.
The working memory overload problem is accentuated since users also need working

memory space to parse the highly embedded formulas keyed in to validate its

comrectness. When entering such formulas, the model predicts that users either will forget
to close the right parenthesis due to memory overload, or will have to pause a long time
to parse the linearly displayed formula to check for correctness. It follows that the error

rate should increase with the level of embedding.

The cognitive model predicts that there will be a long pause when subjects check
for the need for closing parentheses (G1). Checking, however, will not ensure all errors
will be eliminated. As visually parsing a linear formula to construct mentally the
semantic units is highly demanding on working memory, it might be impossible to
reconstruct a highly embedded formula. Users will often resort to counting parentheses
to check for equal numbers of right and left parentheses. This sometimes leads to
syntactically balanced but semantcally incorrect formulas. Furthermore, counting
parentheses that are clustered together is visually demanding and can lead to syntactic

errors of unbalanced parentheses.

The cognitive model also predicts that there will be a long pause when users face
a complex operant. The pause is for scanning ahead to see where the closing parenthesis
is needed and for loading this subgoal into memory. Such parsing again requires working

memory and might displace previous subgoals of closing unbalanced parentheses.

Overall, there are many cognitive bottlenecks as predicted by the above systems.

We now describe the design of a formula editor that specifically addresses these

difficulties.

81

3.7 The Semantic Formula Editor

We design a formula editor that allows users to break the task down into
sequences of subtasks conforming to the recursive semantic structure of formulas. The
interface will allow users to manipulate the <O><A><O> structures of a formula. The
interface will allow users to concentrate on the task of entering formulas but not the task
of translating the formula into a linear structure and keeping track of extraneous subgoals.
The interface will keep track of the semantic structure of formulas to avoid the need to
construct mentally the semantic units. The editor is designed to reduce the need for
planning and checking. We will call this editor the 'semantic editor’ as it manipulates and

keeps track of the semantic structure of formulas.

From the formal grammar of formulas in Figure 3.2, we understand that formulas
are built up recursively with the basic structure or the semantic units of
<operant><operator><operant>. The design of the semantic editor evolves around this
basic structure of the formula. It allows users to create complex formulas from the basic
semantic units recursively without having to worry explicitly about parentheses.
Parentheses are generated automatically as a byproduct when users create a complex
operant. There is a special key to create complex operants and is denoted by “()” on the

keyboard.

To compare directly the semantic editor with the linear editor on a formula
transcription task, the semantic editor is designed for a left-to-right strategy for entering
the components of a formula. This will turn out to be an in-order traversal of the syntax
tree. Working with one complete semantic unit of <O><A><O>ata time, the formula is
expanded recursively from a left-to-right order as prescribed by the grammar. To ensure
we have a direct comparison with the linear editor, the output of the semantic editor is

made linear although we have versions that will produce a structured display of the

formulas as they are keyed in.

82

To key in a formula, users employ sequences of three keystrokes of <O><A><0>.
When the <operant> is simple, users just type the variable (a number in this case); when
the <operant> is complex, users just press the ()’ key. The '()' key is a special key for
creating complex operants. These three keystrokes form a natural subgoal as it conforms

to the semantic unit in formulas.

1. tokey in (1+2)*3

current screen display next key(s) pressed
blank 1+2

1+2_ O

1+2_ *

(142)*_ 3

(142)*3_

2. to key in 3*(1+2)

current screen display next key(s) pressed
blank 3*

3%_ 0

3*%() 1+2

3%(14+2_)

Figure 3.9 Two Examples of How the Semantic Editor Works

A slight complication arises when there is a sequence of consecutive simple
operants, e.g., 1+2+3. Grammatically, it can be view as (1+2)+3 or 1+(2+3). Users can
still use the complex operant key to maintain the sequences of three keystrokes. The
editor can be programmed to check for operator precedence and not display the extra
parentheses. However, in order not to present users with too much novelty, we chose not
to enforce the binary nature of formulas but to allow users 10 type in the string as it is

with 5 keystrokes like when using a linear editor. Figure 3.9 and Figure 3.10 give

83

examples of how the semantic editor is used to enter formulas t0 clarify the workings of

the semantic editor.

In Figure 3.9 and 3.10, ‘_’ denotes the current cursor position and ‘()’ is the key to
create complex operant. The bold print denotes highlighting on the screen. The sequence
of keys pressed shown in the right column always falls into groups of three’s as the key
press sequence conforms to the <O><A><O> structure. There are two ways of creating
complex operant depending on whether the complex operant is before or after an
operator. In the first example, the complex operant is before the operator * and the
complex operant is created after the embedded formula 1+2 is created. When the

complex operant to be created is before an operator, pressing the ‘()’ key before the
operator key will highlight the next semantic chunk of the formula that can be made into
a complex operant. Pressing any operator key after some semantic unit has been
highlighted will insert a pair of parentheses around that unit before the operator and leave
the cursor after the operator. In the second example, the complex operant is after the
operator ‘** and the complex operant is created before the embedded formula 142 is
inserted. Pressing the ‘()’ key after any operator will create a pair of parentheses after
that operator and leave the cursor key within the newly created parentheses to insert the
embedded formula. A slightly more complex example in Figure 3.10 will illustrate

additional functions of the semantic editor.

In the example in Figure 3.10, notice that after keying .5+3, () was pressed twice
to create the desired complex operant. Whenever () is pressed to create a complex
operant before an operator, the smallest whole semantic chunk to the left of the cursor is
highlighted. If the semantic chunk is not the one desired, pressing () again will highlight
the next larger meaningful chunk. When the desired chunk is highlighted, pressing any
operator key will create a pair of parentheses around the complex operant before the

operator. However, it is infrequent that users need to check whether the correct semantic

84

chunk is highlighted. Normally, the first semantic chunk highlighted is the one desired:
rarely, users need another one or two more ()’ key presses to highlight the desired chunk.
If a bigger semantic chunk is needed, the highlighting will help users parse the semantic
structure c;f the formula and reduce errors and long pauses due to perceptual and memory

load. Also, since only meaningful semantic units are highlighted, errors due to illegal

syntax will be eliminated.

 3*(\1+2 43)
3. tokeyin =™ 5
current screen display next key pressed
3*_ | 0
3*(D) | 142
3%(142.))
3*%(142_) |
3((1+2)°) | 543
I#((142)1.5+3_) | 0
3*((1+2)A.5+3)))
3%((142)A.543)_ | /
(3*((142)05+3)) /_ | 5
(3*((1+2)M5+43)) /5_ |
Figure 3.10 Another Example of How the Semantic Editor Works

Since the editor keeps track of the underlying semantical structure of the formulas
and users input formula according to the semantics of the formulas, the editor can detect
any syntactic errors users make as they key in the formulas. Consequently, there can be
no syntax errors when using the editor; errors will only be typographical errors or
semantic errors. The latter can be caused either by a misunderstanding of the semantic

structure of a formula or by not knowing how the semantic editor functions.

85

Error Corrections When Using the Semantic Editor

Since the editor works with semantic units of formulas. any error correction also
will be based on semantic units. For simple errors like typographic errors, users can use
the normal backspace key and retype the variable or operator. For correcting structural
errors, there is a special ' UNDO' key. The UNDO key performs a few functions that
reverse the effects of actions related to creating complex operants. If the UNDO key is
used after some complex operant is highlighted but before the ‘()" key is pressed, the
highlighting will be undone and cursor position restored to where it was just before
highlighting. Pressing the UNDO key immediately after a complex operant is created
will delete the pair of parentheses just created. The editor does not allow deletion of a

single parenthesis as it will then not be able to track the semantic structure of the formula.

Structural Display of the Formula while it is Keyed in

As the editor keeps track of the underlying semantic structure of the formula, an
important feature of the semantic editor is its ability to display the formula in a way that
reflects its semantic structure while the formula is being keyed in. Different versions of -
the editor have been modified to display instantly while the formula is being keyed
displaying (a) different types of parentheses to indicate different levels of parentheses, (b)
numbers at the bottom of parentheses to indicate the levels of embedding, and (c) the
formula on multiple lines with the depth corresponding to the level of embedding of the
operant. Ultimately, the editor can display the formula in a typeset format on a graphics
terminal while it is keyed in. Displaying formulas in a typeset format reduces the need to
use parentheses to demarcate the semantic units. This will reduce the clutter on the

screen. These improved displays will help users parse the formula and reduce the

semantic gap on the output side.

86

This structural display capability is stripped from the editor used in the
experiment to keep the differences between the two editors to the difficulties of
translating external task to internal unit tasks. We next develop a cognitive model for

using the semantic editor and then describe an experiment to compare users’ performance

when using the two editors.

3.8 A Cognitive Process Model for Using the Semantic Editor

Like before, we will use a cognitive model to model the cognitive process of
using the semantic editor. Figure 3.11 presents the cognitive model in NGOMSYL
notation and Figure 3.12 presents the same model in a schematic diagram. By using the
semantic editor, the users’ action of creating formula now conforms with the structure of
the formula. There are only two types of subgoals corresponding to the two methods in
the model. The crucial part is that each of these methods has an <O><A><0> structure.
The users use the basic building block of <operant><operator><operant> recursively to
build up the formula. When the operant is simple, the user just types the variable; when
the operant is complex, the user just presses the complex operant key '()'. Parentheses are
now a byproduct of the meaning of the formula as intended by the user; whereas in the
linear text editor, parentheses are used explicitly t0 give meaning to formulas. Also, one
very important difference between the two production systems is that the subgoals for the

semantic editors are all self-closing; that is, they do not generate unfinished subgoals that

need to be attended to later, e.g., closing parenthesis.

If we compare the cognitive mode! above with the cognitive model in Figure 3.7
that models the cognitive process of using a linear formula editor, we can see that the
cognitive difficulties for entering formulas have been greatly reduced by the semantic
editor. Although the two models produce about the same number of keystrokes when

fully decomposed into keystroke-level operators, they have very different subgoal

87

structures. The subgoal structure when using the semantic editor reflects the task goal of
creating the semantic units. When using the linear editor, the subgoals produced contain
many single keystroke subtasks of opening and closing parenthesis. These subgoals are
extraneou’s to the task of formula entry and require a long time to plan and track. There
are no cognitive operators in Figure 3.12 such as scanning, checking, remembering, and
recalling. The cognitive difficulties have been reduced in three areas: (a) no need to
parse the formula to be keyed in to see where the closing parenthesis is needed; (b) no
need to remember to close parentheses and thus preventing subgoals from accumulating;
and (c) no need to visually parse the linear formula on screen to see if parentheses are
balanced. These improvements reduce working memory and perceptual load and should

help reduce errors and long pauses.

Cognitive Model for Using the Semantic Editor

Method to accomplish goal of entering formula
Accomplish the goal of entering operant
Accomplish the goal of typing operator
Accomplish the goal of entering operant
Report Goal Accomplished

If the operant is simple, then type the variable
If the operant is complex, then accomplish the goal of entering formula

Method for accomplish the goal of typing operator

A.

1

2

3

4

B. Selection rule for the goal of entering operant

1

2

C.

1 If operant before operator is complex, press “()” key until desired

chunk highlighted
2. Type operator
3. If operant after operator is complex, press “()” key
4. Report goal accomplished

Figure 3.11 A Cognitive Model for Using the S emantic Editor

The only perceptual difficulty for the semantic editor occurs in step C1 where
users need to see whether the desired chunk is highlighted. As explained before, this

checking is seldom needed; most of the time, the first '()’ will highlight the chunk

88

desired. Also, this difficulty arises not as a deficiency of the editor but a deliberate
design choice as explained. We have decided not to display the structured formula as it is
being keyed in, which will make the highlighting feedback easier to evaluate, and not to

enforce the binary nature of the formula that will further eliminate the need to highlight

larger chunks.
Legend:
[Goalsubgoal
O Operations A
0 Decision Enter Formul
Al A
Enter Operant

Figure 3.12 A Schematic Diagram for Using the Semantic Formula Editor

In the ideal situation of optimal performance like those modeled by GOMS, the
above semantic editor will produce subgoals of three keystrokes each. The subgoals are
the <O><A><O> chunks and this will give a keystroke time of MKKk as predicted by the
GOMS keystroke level model. Since there is no need for planning and tracking of these
subgoals, the time predicted by a keystrok.e-level model will closely match the actual
performance time. Whereas when using the linear editor, the prediction of a keystroke-
level model will be way off as there is too much time for planning and validating. Also,

due to cognitive overload, the task of keying complex formulas linearly may never be

practiced enough to be skilled.

89

Although the production system predicts that the semantic editor will produce
fewer errors and shorter performance time, we do not know users’ performance when
using the semantic editor. Users might have conceptual problems learning how to use the
editor. Users might find the editor impossible to learn due to its novelty or users might
find it difficult to see the recursive semantic structure in the formulas to be keyed in. We

will now perform an experiment to test our model's prediction and the usability of the

semantic editor, and the subgoal theory.

3.9 A Study to Compare the Cognitive Process when Using the Two Editors

The Objective

The objective of the experiment is to illustrate the subgoal theory by a direct
comparison of the performance of subjects using the linear editor and the semantic editor
to key in formulas. The performance in terms of time and error rate will be compared to
the predictions of the cognitive models for using the two editors. The outcome will
demonstrate how a simple redesign of the interface allows users 1o map the task directly
into meaningful subgoals thus reducing extraneous subgoals and eliminating many

cognitive bottlenecks.

The Subjects

Sixteen first year computer science students with limited computer experience
were recruited from the National University of Singapore at the start of their first
semester. They were paid an equivalent of US$10 each for participating in the
experiment. Subjects were randomly assigned to one of the four conditions of the

experiment. The conditions are the order of using the editors in the experiment and the

90

formula versions to be used with the editors to counter balance any possible practice

effect.

The Physical Setup

The experiment was conducted in a computer lab with 16 IBM ATs with color
monitors and extended memory. The computers are on four rows of tables with four

computers in each row.

The Data Logging Programs

A keystroke capture program, ‘RTCapture,” developed at the University of
Michigan was used to time stamp each keystroke. The key capture program has a
resolution of two milliseconds. The editors were programmed in Turbo Pascal and were
able to capture the completed formulas in a text file for further analyses of the types and

positions of errors. The screen was programmed to display only the formula the user was

entering.

The Tasks

Each subject had to key in 20 formulas of varying complexity, similar to those
used in the pilot study, using both the linear editor and the semantic editor. The subjects
saw a different version of the 20 formulas when they switched editors. The two versions
were developed to have identical structure but different cosmetic appearance by varying
the variables and operators. The first four formulas were used as warm-ups and are not

analyzed. Appendix D lists the formulas used in the experiment.

The Dependent Measures
The four dependent measures that will be investigated are (a) the time per

keystroke to key in a formula, (b) the number of errors in a formula, (c) the number of

extra keystrokes per formula, and (d) the position of parenthesis errors.

91

(a) The time per keystroke is the total time to key in a formula divided by the
ideal number of keystroke to key in the same formula, i.e., when there is no backtracking
to correct mistakes. The time per keystroke is a combination of time for cognitive
activities (M) and key press (k). This is a gross measure of performance. We expect that
the keystroke times when using the editor to key in formulas should not exceed two
seconds (M + k). If the keystroke time is greater than two seconds, elements of planning

and checking of subgoals, or extra keystrokes must be involved.

(b) The number of errors in a formula is the tally of the missing or extra

parentheses, and the missing or wrong variables or operators.

(c) The number of extra keystrokes is the actual number of keystrokes used
minus the ideal number of keystrokes for the particular formula entered. Extra keystrokes
occur when users need to backtrack to correct mistakes or to insert a forgotten

parenthesis.

(d) The position of parenthesis error is the level of embedding in the formula
within the parenthesis pair involved. A parenthesis error is one where the parenthesis is
either missing or extra. In the following examples, the square bracket denotes a
parenthesis error. The errors can occur either at the right or left parenthesis positions.
Only the left parenthesis errors are shown in the examples. For example: a position one

error, [1+2); a position three error, [((1+2)*3)/2)"2; etc.

The time per keystroke, the number of errors, and the number of extra keystrokes
are a set of items which trade off. A subject who was careful in planning and checking
would have fewer errors but the time per keystroke would be long. Similarly, subjects

that had fewer errors could be using lots of extra keys to backtrack to correct mistakes.

92

The Independent Variables

The experimental design is 2x2x2x4 within subject design with editor, skewness,
decay, and level of embedding as the independent variables. Each is described and
illustrated with examples below. There were also two between subject variables, the
order of editor usage and the formula version, but these were counterbalanced and not

included in the analyses as we did not hypothesize any effects for them.
Editor: the linear editor versus the semantic editor as described.

Skewness of Formula: left skewed versus right skewed parentheses cluster. An
example of left skewed formula is (((1+2)*3)74)/5; an example of right skewed formula
is 4/(47(1%(2+3))). We want to see whether itis the planning of opening parentheses or
the validating of closing parentheses that causes problems. Our hypothesis is that
planning and balancing parentheses are equally difficult. Both arise due to the
mismatched of object structures in the task space and system space leading to extra

subgoals.

Decay before Closing parenthesis: long decay versus short decay. Decay has to
do with how long a subgoal needs to be kept in working memory. In particular, in using
the linear editor. the subgoal of closing parenthesis will be kept in working memory until
all intervening variables and operators have been keyed in. An example of short decay
before closing parenthesis is (1*(2+3))/4; an example of a long decay is
(1*(2+3)+576)/4. The literature is unclear whether memory overload is caused by
displacement or decay of items in the memory. The results will help us identify whether

long delay will cause loss of information from memory.

Level of embedded parentheses: {wo, three, four or five levels of embedding. An

example of a formula with two levels of embedding is (1*(2+3))/4; an example of one

93

with five levels is ((((1+(2*3))*6)23)/6)A2. This is a manipulation of the complexity of

the formulas thus the memory load of subgoals to balance closing parentheses.

Appendix E gives a listing of the formulas used and their classification.

The Experimental Procedure

The experimenter introduced the experimental procedure and demonstrated the
two editors using overhead projection of a PC screen in a 40 minute session. Subjects
then had a practice session for the Linear Editor and a practice session for the Semantic
Editor where they were led through a series of examples with increasing complexity. At
the end, they had to key in four practice formulas correctly twice to reach criterion.

Appendix F lists the practice session instructions and the practce formulas.

Subjects were then randomly divided into four groups with each group taking up
one of the four rows of tables. Each subject had one computer to himself or herself. Half
the subjects then started the actual task with one editor while the other half started with
the other editor. There were two versions of the formula booklet as described in the task
description: Version A and Version B. To counter-balance the possible order-effect of
using different editors and formula versions, half the subjects using a particular editor
were presented with version A, the other half, version B. After they had entered all the
formulas using one editor, they proceeded to enter another 20 formulas from a different
version of the formula booklet using the other editor. However, before they entered the
20 formulas using a different editor, they had to key in the four practice formulas
correctly twice again using the switched editor so that there were minimal residual effects
from using the previous editor. In the actual trials, subjects entered 20 formulas
presented one on each page in a booklet. The first four formulas will not be analyzed as

they serve to bring the subjects up to speed in addition to the four practice formulas.

94

3.10 The Hypotheses

We expect that subjects will perform better when using the semantic editor
compared to when using the linear editor. In particular, we expect the independent
variables to affect the linear editor but not the semantic editor (see Figure 3.13). We will
discuss the hypotheses (stated only in their alternate forms) under two sections: (2) the
positions of errors, and (b) the effects of the levels of embedding, skewness, and decay on
the dependent measures. We discuss the last three variables together since they are

tradeoffs.

2.6
24-
2.2:' Linear -

N L
o

1.6

Errors or Time or Extra Keys
¥

1.49

1.2 Semantic I

Level of Embedding or Decay or Skewness

Figure 3.13 The Hypothesized Interaction E 'ffects of the Independent
Variables on the Dependent Measures

The Positions of Parenthesis Errors

For the linear editor, we expect that there will be more errors at parenthesis

positions where the level of embedding within the parentheses increases!. As the

1See page 91 discussion on the Position of Parenthesis Errors dependent
measure for examples.

95

embedding level increases, there will be more subgoals for planning and checking to
parse the embedded hierarchical formula to a linear structure to see how many opening or
closing parentheses are needed. Parsing requires working memory to keep track of
intermediate chunks. Also, as the level of embedding increases, the memory load will
increase to keep track of the increasing number of subgoals for closing parentheses.
When the memory load is exceeded, there will be errors. This will not be the case for the
semantic editor as there are no extra subgoals to translate the mismatched object

structures and therefore no planning, tracking, and checking of these extra subgoals.

Hypothesis 1A: For the linear editor, the number of parenthesis errors will

increase at parenthesis positions with higher levels of embedded formulas.

Hypothesis 1B: For the semantic error, the position of parenthesis error will

not be correlated with the level of embedded formula.

The Effects of Level of Embedding, Skewness and Decay

The hypotheses for the effects of the four independent variables on the three
dependent variables are summarized in Table 3.1. The columns present the dependent
measures and the rows present the independent variables. For the first independent
variable, Editor, we expect the semantic editor to perform better for all three dependent

measures.

For the second independent variables, the Level of Embedding, which
manipulates memory load, we again expect the semantic editor to perform better.
However, the interaction effect is what we are looking for. We expect increasing levels
of embedding will deteriorate the linear editor performance increasingly but not so for the
semantic editor. However, the three dependent measures are tradeoffs and subjects can

reduce errors by taking more time to plan and check or to back track to correct mistakes.

96

Consequently, we expect level of embedding to affect at least one out of the three

dependent measures.

The Dependent Measures

The Independent || N0 of Errors Time Per Key Extra Keys
Factors (seconds)
(H2) Editor Semantic Better Semantic Better Semantic Better
(H3) Levelof f Lin Lin Lin
Embedding / / /
/
Level x Editor — Sem — Sem Sem

e2 e3 ed e5

e2 el ed e5

e2 e3 ed e5

(H4) Skewness

\Li.n

Skewness x Editor Sem Sem Sem
Left right Left right Left right
(H5) Decay i / Lin
Decay x Editor
Sem Sem Sem
I Short long | Short long | Short long

Table 3.1 The Hypotheses for the Effects of the Independent Variables
on the Dependent Measures

For Skewness, we do not expect any main or interaction effect for the first two

dependent measures since we have stated that planning for open parentheses is as difficult

as balancing parentheses. But, we do expect an interaction effect for the independent

measure of the number of extra keys. Left skewed formulas will make planning for

opening parentheses difficult. Subjects will forget to open parentheses and later when

they realize the mistake and backtrack to insert the opening parentheses.

97

For Decay, we expect that a long embedded formula will likely cause decay of the
subgoal to balance parentheses. This will lead to more errors for formulas with longer
decay when using the linear editor but not when using the semantic editor. Decay is
unlikely to affect the other two dependent measures. However, subjects could reduce the

number of errors by increasing the checking time if they realize that the formula does not

look right.

3.11 The Results of the Formula Editor Experiment

In general, the results confirm our hypotheses that the semantic editor can reduce
the cognitive difficulties when used to enter formulas. The semantic editor, compared to
the linear editor, reduces the number of errors committed, the keystroke times and the
number of extra keystrokes. Also, the performance when using the semantic editor,

unlike that when using the linear editor, is not affected by the levels, the skewness, and

the length of the embedded formulas.

Despite its novelty, the semantic editor was easy to learn. Subjects on the average
only took 20 minutes longer to go through the practice formulas when learning the
semantic editor as compared to that when using the linear editor. The extra time is
reasonable since subjects have seen the linear editor before but not the semantic editor.

Also, subjects commented after the experiment that the semantic editor was easier to use

compared to the linear editor for entering formulas.

Due to computer crashes, only fourteen out of the sixteen subjects' data are
captured. This will not pose a problem for balancing the treatment conditions since every
independent variable is a within-subject variable. The between-subject factors, the editor
order and the formula version, do no affect the results significantly. Since they are
counterbalanced. they are collapsed into the within-subject factors and are not analyzed.

We will discuss the results according to the format of the section on hypotheses.

98

3.11.1 The Positions of Parenthesis Errors

The Semantic Editor

Out of the 224 formulas that the 14 subjects keyed in using the semantic editor,
there were only a total of nine errors. Out of the nine errors, six are accounted for by
three missing parenthesis pairs and three missing variables (0.5) for creating square root
operations. For example, subjects did not transcribe \/—1_+_2— to (142)A.5 but left it as 1+2.
This can be attributed to slips since the visual cue for the need to create a square root
operation is not obvious. However, since there are a total of 112 square root operations
in the formulas that the subjects keyed in. three missing operations out of a possible 112
is negligible. The remaining three missing pairs of parentheses were simply left out by
the subjects. It could be that subjects forgot to create the complex operants due to
unfamiliarity with how the semantic editor works, or due to the difficulties in seeing the

complex operant structure in the linearly displayed formulas on the screen.

The positions of the nine errors are also not correlated to the level of embedding

thus ruling out memory load or visual load as the cause. Table 3.2 gives the location and

the number of errors.

Position of error

(Level of Embedding) 1 2 3 4 5
Number of Errors 1 3 2 2 0
Possible Errors 896 616 392 224 112

Table 3.2 The Positions and Number of Errors for the Semantic Editor

The Linear Editor

There were many more errors when subjects used the linear editor to enter

formulas. There are a total of 93 errors in the 224 formulas that the 14 subjects keyed in.

t‘”

99

There are 38 missing parentheses, 32 extra parentheses and seven missing variables.

There are 16 formulas that are syntactically correct, i.e., the parentheses are balanced;

but semantically incorrect, i.e., the balanced but misplaced parentheses created

structurally different formulas. The almost equal number of missing parentheses and

extra parentheses shows that planning and checking are equally difficult.

20
N 18
o
16
o 14
f 12
10
E
. 8
r 6
o 4
)
S
0

B Lft
[right

p2

p3 p4 p5

Position of Parentheses

Figure 3.14 Numbers of Errors at Parenthesis’ Locations

Figure 3.14 depicts the number of errors committed at the left and right

parenthesis’ locations according to how many levels of embedded formulas there are

within the erroneous parentheses. The results show that subjects had more problems

when there were higher levels of embedding [F(3,39)=5.889, p=.0025]. There were no
errors at parenthesis’ location when there was only one level of embedded formula, e.g.,

(142). The cognitive model in Figure 3.7 predicted this phenomenon: higher embedding

level leads to higher memory load that results in loss of information (the subgoal to

balance parentheses) from the working memory. Also, we see from Figure 3.14 that

there are about equal number of errors in both the left and right parentheses locations

[F(1,39)=.548, p>.05). This strongly suggests that balancing parentheses is not the only

cognitive difficulty. This implies that a syntactic editor, like those found in some LISP

100

editors, that will balance any unbalanced parentheses will not solve all the cognitive
problems when entering formulas linearly. Subjects had difficulties in planning for the
subgoals to open parentheses by parsing the hierarchical formula structure to a linear

string structure. The cognitive model again predicted this difficulty.

3.11.2 The Effects of Level of Embedding, Skewness and Decay

Table 3.3 depicts the results of the ANOVA on the effects of the four independent
variables on the three dependent measures. The results, the directions and the
significances of differences, all turned out as predicted by the hypotheses. We will

discuss below the results organized by the independent variables.

Editor

The Semantic editor was superior in all three dependent measures. The time per
keystroke for the linear editor of 2.317 is greater than that predicted by a GOMS
keystroke level model of 2 seconds (M+k). There must be many extra cognitive activities
other than mental preparation (M) when using the linear editor. Thus, this confirms our
hypothesis that the keystroke-level model cannot account for the long time when using
the linear editor to enter formulas. The planning, and evaluation of the extra subgoals to

open and close parentheses must be accounted for.

The drastic difference in extra keystrokes for the two editors (.982 versus 16.527)
can be attributed to subjects having difficulty planning for the subgoal of opening
parentheses when using the linear editor. They often resort to using cursor keys to
backtrack to insert forgotten opening parentheses.

There is more backtracking and many more errors when using the linear editor.

Since all three dependent measures shown significant effects, the difficulty in using the

linear editor was not overcome by tradeoffs among these three dependent measures. That

101

is, subjects still made more mistakes when using the linear editor despite spending more

time in planning and checking and backtracking to correct mistakes.

The Dependent Measures

The Independent | N of Errors Time Per Key Extra Keys
Factors (seconds)
—_ ey
Editor Semantic = .045 Semantic =1.289 Semantic = .982
Linear =321 Linear =2.317 Linear =16.527
F(1,13)=12.333 F(1,13)=228.535 F(1,13)=28.320
p=.0038* p=-0001* p=.0001*
Level of e2=.125 e2=1.747 £2=6.643
Embedding e3=.107 e3=1.556 ¢3=8.098
ed=.250 e4=1.887 e4=10.107
e5=.250 e5=2.021 e5=10.170
F(3,39)=3.254 F(3,39)=19.733 F(3,39)=2.153
p=.0318* p=.0001* p=.1092
Level x Editor F(3,39)=2.940 F(3,39)=6.622 F(3,39)=2.018
p=.0450* p=.0010* p=.1273
Skewness left=.170 left=1.811 left=10.63
' right=.196 right=1.795 right=8.98
F(1,13)=.138 F(1,13)=.055 F(1,13)=6.148
p=.7158 p=.8180 p=.0276*
Skewness x EQUOT | £y 13)-1.322 F(1,13)=.275 F(1,13)=7.299
p=.2692 p=.6090 p=.0181*
Decay short=.161 short=1.769 short=8.272
long=.205 long=1.873 long=9.237
F(1,13)=.853 F(1,13)=.991 F(1,13)=.991
p=.3725 p=.787 p=.3377
Decay x Editor F(1,13)=.582 F(1,13)=.868 F(1,13)=.868
p=4591 p=.0386* p=.3685

Table 3.3 The Summary of ANOVA of the Effects of the
Independent Variables

102

The Level of Embedding

The results in Table 3.3 show that the main effects for the level of embedding are
significant for the number of errors and time per key. However, we need to test the
simple effects to see whether the level of embedding only affects the linear editor and not
the semantic editor as stated in Hypothesis H3 in Table 3.1. A pre-planned contrast
analysis is used to test the effects of level of embedding on the linear editor and the
semantic editor separately. A contrast with coefficient of -2,-1, 1, 2, is used for the the
four level of embedding, i.e., we expect that higher level of embedding will lead to poorer
performance.

The contrast analyses reveals results that confirm Hypothesis H3 in Table 3.1
entirely. The three dependent measures increase with the level of embedding for the
linear editor, but not for the semantic editor. For the number of errors, the simple effect
of the level of embedding on the linear editor is significant [F(1,39)=14.534, p=.0005],
while that on the semantic editor is not [F(1,39)=0.0, p=1.00]. For the time per key, the
simple effect of the level of embedding on the linear editor is significant [F(1,39)=36.49,
p=.0001], while that on the semantic editor is not [F(1,39)=.556, p=.4563]. For the
number of extra keys, the simple effect of the level of embedding on the linear editor is
significant [F(1,39)=10.72, p=.0022], while that on the semantic editor is not
[F(1,39)=.001, p=.9509].

Since the level of embedding is a measure of the memory load to balance closing
parentheses and to plan for opening parentheses, the significant effects of the level of
embedding on the three dependent variables suggest that the memory load is a real

problem for the linear editor users.

Skewness

The results in Table 3.3 and from simple effect tests confirm Hypothesis H4 in

Table 3.1 on the effects of skewness on the dependent measures entirely. That is,

103

skewness only affected the number of extra keys when using the linear editor. Skewness
has no effects on the number of errors and the time per key. Simple effect tests also
reveal that skewness has no effect for these two independent variable for both editors [all
four cases p>.3]. However, for the number of extra keys, the simple effect of skewness
on the linear editor is significant [F(1,13)=13.899, p=.0033], while that on the semantic

editor is not [F(1,13)=0.053, p=.8222].

This shows that balancing parentheses is not the problem, planning for opening
parentheses is equally demanding. The mean number of extra keystrokes for semantic
editor (left, right) are .742 and 1.223, whereas that for linear editor (left, right) are 20.304
and 12.75 respectively. When there is a cluster of left parentheses, subjects had difficulty

planning the subgoals to open parentheses due to perceptual and memory overload.

Decay

Again, the results in Table 3.3 and from simple effect tests confirm Hypothesis
HS5 in Table 3.1 on the effects of decay on the dependent measures entirely. Although
Table 3.3 shows that decay does not affect the number of errors when the two editors are -
considered together, a simple effect test shows the results as we hypothesized. Decay
affects the number of errors for the linear editor {F(1,13)=2.070, p=.0442] but not the
semantic editor [F(1,13)=.129, p=.3232]. No other significant simple effects is found for
the other two dependent measures as hypothesized in Table 3.1. The results show that

decay of working memory is a problem as well as working memory load.

3.12 Discussion of Results

The results suggest that subjects were forced to adopt many unnatural, nested
subgoals when the object structures manipulated are different in the task space and the

system space. This results in the task acquisition time and evaluation time overwhelming

104

the keystroke time, thus making the GOMS keystroke level prediction inaccurate. With
an average keystroke time of 2.317 seconds, it seems that practically every keystroke -

constitutes a subgoal by itself.

Since there were no trade off between the number of errors and the time per key,
subjects using the linear editor made many errors despite careful planning and checking.
The slow time per key indicates that subjects generally cannot remember when to close
the parentheses. They engaged in checking to try to ensure that the formula was correctly
keyed in. This is reasonable as the memory load is easily exceeded with even a low level

of embedding due to the use of working memory to translate the hierarchical structure to

the linear structure.

The results also show that the key-stroke level model assumptions of the
independence between task acquisition and task execution is invalid here. A KLM
assumption states that making the command more efficient does not affect the acquisition
time. We show otherwise here. A good interface that allows the formation of a subgoal

structure that reflects the task structure will greatly reduce the task acquisition and task

evaluation time.

Also, the results show that when using the linear editor, a user may never become
skilled due to the excessive memory and perceptual load. Thus, we may never be able to

apply the KILM in its current form since the users may never be skilled.

Finally, it illustrates why a simple qualitative difference in the interface design
makes a big differences in performance although the number of keystrokes remain the
same. It is the subgoal structure that explains the performance differences and not the

number of keystroke as in the current KLM.

105

3.13 Conclusion

In this chapter, we illustrated the subgoal theory with a simple application of
entering formulas using different editors. When using a linear editor to enter formulas,
users employ many extra subgoals to bridge the task-system mismatch as they operate on
different structures. These extra subgoals created many cognitive difficulties of planning,
tracking, and validating these extra subgoals that do not reflect the task structure. The

subgoals are short, unnatural, and often only contain one keystroke.

We then designed a semantic editor that operates on the <O><A><0> structures
of formulas that alleviates many cognitive difficulties when using the linear editor. The

subgoal structure when using the semantic editor is natural, reflects the task structure, and

does not need much planning, tracking, and validating.

This empirical study illustrates the importance of designing an interface that
allows the formation of good subgoal structure. The subgoal structure must reflect the
task structure, as well as the way the user thinks of the task; it must be within the
working memory constraint when decomposed and easy to acquire and validate. The
semantic editor shows that we do not always need a fancy interface to make an interface

easier to use, just some careful thoughts about how users think of the task structure.

The next chapter describes an experiment to show again that extraneous subgoals
cause poor performance. However, this time the extraneous subgoals are generated to

overcome the mismatch when the interface does not allow the user to execute the

subgoals in the order conceived.

CHAPTER 4
THE LOTUS MENU EXPERIMENT

This chapter describes a Lotus menu traversal experiment in which subjects
execute spreadsheet modification tasks using the Lotus hierarchical menu system. The
objective of the experiment is to further illustrate the theory in Chapter 2 that extra
subgoals are used to bridge task-system mismatch leading to degraded performance. The
task-system mismatch here is operationalized as an interface that does not allow users to
execute actions in the order they are conceived in the task space. It shows how the
interface can affect the way users think about the task, and _subsequently how the task is
decomposed into subgoals, and thus affecting the execution time and error rate. This
violates the GOMS keystroke-level model’s assumption that the execution time is
independent of how the task is acquired. It also demonstrates that consistency within

interface alone is important but consistency of interface with how users think of the task

also can affect performance.

In this experiment, we manipulate how subjects decompose a task goal into
subgoals by manipulating the grammatical structure of the menu and instructions
presented. We present two versions of the menu, the original Lotus menu with an
inconsistent structure and a revised menu with a consistent <object><action> structure.
We also present two versions of instructions, one version has an <object><action>
structure that matches the revised Lotus menu and the other version has an
<action><object> structure. We expect that subjects given the consistent revised menu

can form a consistent and efficient subgoal structure to explore the menu and execute the

106

107

commands. When the instruction structure matches the menu SIructure, users can
decompose the task goal into subgoals that match the order of hierarchical items on the

menu. When there is a mismatch, users will need an extra subgoal to buffer the out-of-

order subgoals. This extra cognitive operation will degrade performance.

The following sections in this chapter present the experiment in “etail. We first
describe the spreadsheet modification tasks, then we describe the lotus menu structure,
the rearrangement of the menu items, and the instructions for the tasks. We then present
a cognitive model of the menu traversal task. Finally, we describe the experimental

setup, methodology, and the hypotheses to be tested.

4.1 The Spreadsheet Modification Tasks

There is a set of common modification tasks when creating or modifying
spreadsheets. This set of tasks is domain independent; they primarily change the
appearance of the spreadsheet regardless of the content of the spreadsheet. Examples of
such tasks are: setting the column width, changing the number format, copying and

moving a block of cells, changing the alignment of the cell contents, etc.

We chose Lotus 123 as the spreadsheet program to execute these tasks as it has
the largest installed base of users. However, the results can be generalized to other
spreadsheet programs or any programs that use a hierarchical menu to issue commands.
Since we are only modeling how people compose commands given a task description and
a hierarchical menu structure, any program that uses a hierarchical menu system will suit

our purpose. The use of the Lotus spreadsheet program is not critical to our findings.

On the other hand, there are some advantages of using a spreadsheet program in
the experiment. First, spreadsheet programs are not used as much as word processing
programs in HCI research. This will allow findings here to generalize to more than word

processing programs alone. Second, since spreadsheets are not as widely used as word

108

processors, it will be easier to find naive subjects. We need naive subjects in this

experiment so that their domain and application knowledge will not confound our
findings.

The following ten spreadsheet modification tasks are used in the experiment.
They are the most common and frequent tasks in spreadsheet applications besides
entering domain-specific information in the cells.

Adjust all the columns’ width at once.
Adjust the width of a few columns.
Set all the contents of the spreadsheet to a desired format.

!\)»—n

Set the contents of a block of cells to a desired format.

Erase the contents of a block of cells.

Copy or Move the contents of a block of cells.
Insert row(s) or column(s).

Delete row(s) or column(s).

Align the contents of the entire spreadsheet.
10. Align the contents of a block of cells.

© 0 N o s W

The method to execute these tasks is to issue a command through the Lotus
menu. We next discuss the Lotus menu structure and the mechanism for issuing

commands though the menu, and introduce the two versions of the menu used in the

experiment.

4.2 The Structure of the Lotus Menu

All tasks in the Lotus program are executed by commands issued through a
hierarchical menu except entering cell contents and navigating. A hierarchical menu
system is one in which complex commands are issued through picking items from a
multi-level menu ree. With the proliferation of more complex software, hierarchical
menus are now used widely so that many commands can be organized in logical clusters.

Users need not memorize the commands; they can explore the functions that they do not

109

know the execution method exactly. To issue a command through a hierarchical menu,
users choose one item from the first level menu and then choose one option under this

item and proceed to the last level of this branch of the menu tree.

To invoke the Lotus menu, users press the ‘/ key. The top screen in Figure 4.1
shows what the first level Lotus menu looks like. The first line of the menu (second line
on the screen) gives the options at the current level. The second line of the menu gives
the options that are available if the current highlighted item on the first line is selected.
This is a ‘look ahead’ feature and is essential for menu exploration. If there are no
options available for the current highlighted item, i.e., the item is at the last level of the

menu tree, the second line of the menu gives a brief explanation of the function of this

highlighted item instead.

When the menu is invoked, the first item on the first level menu is highlighted.
To highlight a different item, users employ the left or right cursor key to move to the
desired item. As the cursor key is pressed, the next item on the same menu level in the
direction of the cursor will be highlighted. An item is selected by pressing the ‘return’
key when it is highlighted. Instead of using cursor key to highlight and then hitting the
‘return’ key to select an item, the user also can type the first letter of the item to select it.
Once the item is selected, the options under this item will move up to the first line of the
displayed menu and the users continue to proceed down the branch of the menu tree. The
users can backtrack up a level by pressing the <escape> key if they venture down the

wrong branch.

A complete command sequence in Lotus requires anywhere from one to four
levels of menu traversal followed by typing in the parameters requested if necessary.
Examples of parameters can be the desired width of the column, the number of decimal
points for number formats, etc. For example, to format cells, users first select Range

from the first level menu, Format from the second level menu, and the type of format

110

desired from the third level menu (e.g., Currency). The users will then be prompted for
the desired number of digits after the decimal point. The whole command sequence is

completed after users supply the parameters requested and hit the final <return> key.

RANGE is highlighted and the available options under RANGE
are shown on the second line of the menu. The screen snapshot below
shows the second level menu under RANGE is now at the first line

after RANGE is selected.

Figure 4.1 The Menu Structure and Menu Traversal in Lotus

As explained earlier, the users can type the first letters of the menu items to issue
the command instead of using the cursor key to highlight the item then press the <return>
key to select it. For the example above, users can issue the sequence of keystrokes
‘/RFC’ to format the cell contents to “currency”. This provides a short cut for expert
users engaged in rule-based behavior. They just need to retrieve the sequence of
keystrokes needed to issue the command without conscious awareness of what command
the individual keystroke corresponds to. However, we expect our novice subjects to
engage in knowledge-based behavior initially by actively engaging in problem solving

and that they need to know whether each menu item will bring them closer to the desired

111

task goals. Thus, our subjects have to tackle the menu items on different levels one at a

time. They will either use the cursor method or will need to tackle each key-binding for

the menu item as a separate subgoal.

The Menus Used in the Experiment

In the experiment, we only present a subset of the entire Lotus menu tree to the
subjects. We only present items on the menu that are related to spreadsheet modification
functions and file functions. The graphics, printing and database functions are pruned
from the menu presented. This way, the naive subjects can get up to speed quickly

without being bogged down by an unduly complicated menu structure.

The Original Menu

Figure 4.2 shows the first version of the menu used in the experiment. This
version retains the structure of the Lotus menu (version 2.2) with items that are not
relevant to our 10 modification tasks trimmed out. The database, graphics, printing and

systems functions have been taken out.

The Lotus menu organization is hybrid. It is organized both by functions and by
frequency of use. On the first level menu, the first item ‘Worksheet’ has to do with
functions that affect the appearance of the spreadsheet, €.g., column width, alignment,
cell format. The second item ‘Block’! deals with operations having to do with a block of
cells, e.g., format, alignment, etc. Copy and Move ought to be under the Block options

but are moved up to the first level as they are the most frequently used commands in any

I‘Range’ in the original menu. The letter R will be used in the first level
menu by the menu item Row in the new menu described later. We cannot use Range
since two items will then start with the same letter R. This makes using the first letter of
a menu item to select the item difficult.

112

spreadsheet program. The File option deals with file operations like saving and

retrieving, and changing directory.

Original Version

Worksheet Block Copy Move File Quit

Retrieve Save Directory

i
Format Label Erase Transpose Protect Unprotect

I !
Left Right Center

{ I
Fixed Scientific Currency Percent

| |
Global Insert Delete Colurlnn Era’se

 EE— r | — 1]]
Column Row Column Row SetWidth ResetWidth Yes No

| |
Format Label-Prefix Column-Width

| |
| I [I
Fixed Scientific Currency Percent Left Right Center

Figure 42 The Subset of the Original Lotus Menu

We can see that the structure of the menu tree is inconsistent in the order of
components. There are actually three types of menu items: (a) object (O), (b) the action
(A) to be performed on the object of interest, and (c) arguments needed to complete the
command. If we exclude the argument specification at the leaf of the menu tree, users see

one of four menu structures on the original Lotus menu: OOA. OAO, OA, A.

This organization is difficult to handle for novices since it is inconsistent in
structure. The menu structure does not matter as much to the experts in rule-based

behavior as they retrieve the equivalent command key sequence regardless of the

113

structural meaning of the key sequence. However, this inconsistent menu structure will
cause problems for novices in knowledge-based behavior as they cannot explore the
system space effectively by having a consistent subgoal structure. For example, they
cannot have a consistent subgoal structure to look always for the object of interest in the
first level menu, then to have a second subgoal to look for the action to perform in the
second level menu, or vice versa. The current Lotus menu might save a keystroke or two
for expert subjects who have memorized the key sequence to execute a command, but it
will not be easy for novices to find the correct command let alone memorize it due to its
structural inconsistency. The ill-structured Lotus menu could be the reason for subjects
in our previous longitudinal study (in preparation) not being able to memorize all the key

sequences and still committing many errors even after two years of extensive use.

The Object-Action Menu

There are many ways to restructure the Lotus menu to help novices as well as
experts. We chose 1o restructure the menu such that the first level menu lists the objects
of interest, the second level menu lists the possible actions that can be performed on these

objects, and the third level menu (if necessary) lists the argument to complete the
command. The objects at the first level menu are Block, Column, Row, Global and File.
Global is chosen when the object of interest is the whole spreadsheet, e.g., changing all
the columns’ width. Verbs are used at the second level menu to denote the actions that
can be done with the first level objects, e.g., copy, delete, set width, etc. Figure 4.3

shows the restructured Lotus menu.

We choose to list ‘Objects’, instead of ‘Actions’ under the first level menu as
there are too many actions and they will not fit on the screen. Having so many items on
the first level menu will make the menu too broad and thus make the search difficult.
This will hamper subjects’ knowledge-based behavior of exploring the menu tree. Also,

we can think of the database function, the graphics function, and the printing function—

114

the three branches in the original menu not included in the revised menu — as objects
(data, graphical, and printer objects) we want to manipulate. Thus, the resulting
reorganization of the menu does not deviate much from the original version. They are
almost equivalent in breadth, depth, and wording. However, we hope to demonstrate that
this subtle menu items reorganization will lead to a significant difference in performance

due to the different subgoal structure needed to traverse the two menus.

New Version

Block Column Row Global File Quit

l
| l

Retrieve Save Directory

I i
Fomat Align SetWidth Erase

R

|
Left Right Center Yes No
[I
- Fixed Scientific Currency Percent
Insert Delete

i |
Insert Delete SetWidth ResetWidth

[i
Copy Move Format Align Erase Transpose Protect Unprotect

P I
Left Right Center

[I
Fixed Scientific Currency Percent

Figure 4.3 The Restructured Object-Action Lotus Menu

Both versions of the menu use the same wording for corresponding items except
that we use Align in the new menu for Label-Prefix. Using the same wordings will

ensure that the differences in performance are due to the menu structure change but not

115

due to the differences in the wording of the items. For Align, the original menu uses
label-prefix which is not a verb thus violating the new menu structure of having a verb for
action at the second level. We use ‘Justfy’ in the instruction of the align cell content task
so that the instruction does not bias against any menu type. Block instead of Range is
used in both the new and old versions as the new version has Row in the first level menu
making the use of Range impossible with two items starting with the same letter. This is
not a problem as our subjects have not used spreadsheet programs before and will not

have preconceived ideas of what block or range means.

We expect users given the new Lotus menu to perform better than those using the
old menu as they can form a more consistent subgoal structure to explore the menu. This
will lead to faster learning, better performance, and fewer errors. To further manipulate
how users will decompose the task goal into subgoals, we will manipulate the grammar
structure of the instructions. We expect that a match between the instruction structure

and the menu structure will further improve performance.

4.3 The Instructions for the Tasks

We use different grammar structures in the instructions to further control how

subjects decompose the task goal into subgoals. There are two types of instructions
where the instruction grammar will either fit that of the new menu structure or will be the
direct opposite. One type of instruction always has the object listed first followed by the
action, i.e., having the same grammatical structure as the new menu. This instruction
type helps users decompose the task goal into subgoals of (a) specifying the ‘Object’, and
(b) specifying the ‘Action’, that directly map to the new <O><A> menu. An example of

this type of instruction is: “For Column A, set the width to 6”.

The other type of instruction always lists the action first in a verb-object grammar.

This type of instruction does not create a subgoal structure that maps directly to either the

116

old or the new menu structure. An example of this type of instruction is: Set the width of
column A to 6. For users receiving this <A><O> instruction with the new <O><A>
menu, they will need to create an extra subgoal to store temporarily the out of order
subgoal of specifying the action first. The users execute the subgoal of specifying the
object, then retrieve the stored subgoal of specifying the action. This extra subgoal will
lengthen performance time and increase opportunity for error. Since the original Lotus
menu has an inconsistent structure, we need to analyze each task separately. In summary,
tasks where the menu structure and the instruction structure fit will benefit subjects more
in terms of learning, error rate, and performance time. We will explore this in detail in a

later section on the hypotheses for the experiment.

Cognitive Model for Lotus Menu Traversal with <O><A> Menu and Instructions

A. Method to accomplish the goal of issuing command
1. Accomplish the goal of reading the instruction
2. Accomplish the goal of issuing the command

B. Method to accomplish the goal of reading instruction
1 Read the first component of instruction

2 Store first component of instruction in memory

3. Read the second component of instruction

4 Store second component of instruction in memory

C. Method to accomplish the goal of issuing the command
1 Retrieve first component of instruction from memory

2. Find menu item corresponding to first component of instruction

3. Accomplish goal of selecting menu item

4 Retrieve second component of instruction from memory

5 Find menu item corresponding to second component of instruction
6

Accomplish goal of selecting menu item

Figure 4.4 Cognitive Model for Lotus Menu Traversal when Task-System match

We can use a cognitive model to model what we have said above about the
cognitive processes involved in issuing a command through the hierarchical menu after

reading an instruction. Figure 4.4 shows a partial GOMS model of the menu traversal

117

process for the new <O><A> menu after reading a matching <O><A> instruction. We

will ignore the steps involved in specifying the argument for the command.

In the cognitive model above, we describe the instructions as having two
components, one describing the object of interest and one describing the action to be
performed. If the menu structure does not match the instruction structure, users will not
find the menu item corresponding to the first component of the instruction in Step C2.
Users will need an extra subgoal to store temporarily the first instruction component and
later retrieve it after the second instruction component is executed. This extra cognitive
effort will cause longer performance time and higher error rate. For the old menus, there
will not be a simple cognitive model to describe the underlying cognitive process as the
menu structure differs for each task type. This inconsistent menu structure will cause
longer learning time and higher error rates. We can only model the use of the old menu
with a simple cognitive model for rule-based behavior when the commands are well
learned corresponding to a sequence of keystrokes for the initial letters of the command

menu items.

The above model also can be modified when users have already memorized the
content of the instrucdon. In that case, Step B above will be skipped entirely and users
simply retrieve the correct component from long term memory (either the object or the
action) in Step C1 and Step C4. The structure of the instruction will not matter much
then as they are already stored in long-term memory. In this situation, the instruction
manipulation may not achieve the results we want but we still expect the new menu to be
better, in terms of performance time and error rates, than the old menu regardless of
instruction type. Users can leam and form a consistent subgoal structure quickly when

the menu structure is consistent.

In summary, we have operationalized the task-system mismatch in two ways. In

the strong manipulation, we alter the Lotus menu structure. With the new menu

118

consistent <O><A> structure. users should be able to decompose the task goal into a
consistent subgoal structure thus leading to better performance. In the weak
manipulation, we try to influence how users think of the task by structuring the wordings
in the instruction differently to match or mismatch the menu structure. We expect users
given an inconsistent instruction-menu structure will need extra subgoals to bridge the
mismatch thus leading to degraded performance. The second manipulation is weaker
than the menu change as we expect users may be able to memorize the instructions after a
few trials as they will be seeing the instructions repeatedly. Once they are able to
memorize the instruction, they will not need to decipher the structure of the instruction
but only need to retrieve from long term memory the components of the instruction in the

right order to form subgoals that match the structure of the menu.

4.4 The Experimental Details

The Subjects

Sixty four first year computer science students with no previous experience in
spreadsheet applications were recruited from the National University of Singapore. The
incentives for participation were the opportunity to learn spreadsheet skills and also an

equivalent of US $25 paid after the experiment. Computer experience of the subjects

vary but they were recorded. Subjects were randomly divided into 4 groups of 16

students each.

The Physical Setup

The experiment was conducted in a computer lab with 16 IBM ATs equipped with

color monitors and extended memory. The computers were on four rows of tables with

four computers in each row.

119

The Software Setup

The ‘RT-Capture’ keystroke capture program developed at the University of
Michigan was used to time stamp each keystroke. The key capture program has a
resolution of two milliseconds. We used the Lotus macro language to modify the menu
displayed and to present the task instructions on screen. Also, we had to remap some
keys, e.g., '/ had to be remapped to a macro-call to display the desired modified menu for

the treatment condition rather than to invoke the real Lotus menu.

The Dependent Measures

The dependent measures investigated are (a) the number of tasks executed
wrongly, (b) the number of tasks with wrong search path leading to backtracking, (c) the

number of tasks using cursor keys to issue the command instead of using the initial letters

of the menu items, and (d) time per keystroke to issue the command.

(a) The number of tasks executed wrongly will indicate how the menu and
instruction structures affect subjects' learning and error rate. A task executed wrongly is

one where the outcome is not as described in the instructions; e.g., the whole spreadsheet

is erased instead of a block of cells.

(b) The number of tasks with backtracking is another measurement of how the
menu and instruction structures affect the subjects' learning and performance time. The
need to backtrack is an indication of subjects having trouble forming the right subgoal or

finding a menu item that matches the current subgoal.

(c) The number of tasks using cursor keys to issue the command is another
measurement of subjects’ learning. Subjects who form the right subgoal structure can use
the initial letters of the menu items more readily to issue the commands instead of using
the cursor keys to explore around the menu. We will however not penalize subjects for

using the <return> key to invoke the first menu item on any level. Only when the right

120

and left cursor keys are used to get to the command item will the task be counted as one

where the subject uses cursor keys 1o issue the command.

(d) The time per keystroke to issue the command is the total time to traverse the
menu divided by the number of ideal keystrokes required. For example, the number of
keystrokes to issue an adjust column width command in the old menu is four (/WCS) but
three in the new menu (/CS). We exclude any keystrokes to specify arguments like

column width or format type. etc.

The Independent Variables
The experiment design was a 2x2 between subject design with menu version and
instruction version as the independent variables. Subjects were randomly assigned to

one of the four treatments.
Menu: the Qld inconsistent menu versus the New OA restructured menu.

Instruction: the Object-Action (QA) instruction versus the Action-Object (AQ)

Instruction.

Tasks

On each day, subjects had to perform the 10 different spreadsheet modification
tasks described in Section 4.1 on each of the three different spreadsheets given for a total
of 30 tasks. The tasks were randomly ordered in each spreadsheet. Subjects had to
perform each task type, e.g., set global column width, three times, one for each

spreadsheet. The order, parameters, and locations of each task type changed across the
three distinct spreadsheets.
All task instructions were given online; there were no written instructions.

Subjects were shown the first spreadsheet on screen when they began. The spreadsheets

were small enough to fit on the screen. A set of labeled keys was used to invoke the

121

instruction screen and to get back to the spreadsheet to perform the task. For each task,
subjects had to press the “read” key to read the next instruction. The instruction for the
next task would replace the spreadsheet on the screen. After reading the instruction,
subjects had to press a “do” key to get back to the spreadsheet to perform the
modification task. The cursor would be placed on the cell where the modification task
was. Subjects did not have to navigate to the cell where the modification was. With the
time stamp on the special keys for reading instruction and starting the performance
coupled with no navigation time, we know exactly how much time subjects spent in
reading the instruction and how much time they spent in planning before the first
keystroke. After subjects had performed 10 tasks on each spreadsheet, the next
spreadsheet was brought up automatically by the macro program written to control the

task sequence.

The Experimental Procedure

To accommodate the 64 subjects in the laboratory with only 16 computers, we
divided the subjects into 4 batches of 16 students each. The experiment was a
longitudinal study and each batch had to attend a total of four sessions. The 16 subjects
in each batch were divided into 4 groups of 4 subjects each for the four conditions in the
experiment. Each group of four subjects occupied one row of computers and received
one of the four treatments. The treatment condition for each student remained the same
throughout the four sessions. We chose not to run all 16 subjects in each batch under the
same treatment condition as that may introduce self-selection and instruction biases. The
treatment conditions for the rows of computers were rotated with each new batch of 16

subjects to counterbalance biases due to sitting position or the computer used in the lab.

122

Each batch of students had to attend four 2-hour sessions scheduled at one session
every two days. Day 02 is on a Thursday, 4-6pm; Day 1, 2, and 3 are on either Monday,
Wednesday and Friday, or Tuesday, Thursday and Saturday 3-5pm depending on the
grouping.

Day Zero was a lecture where the experimenter introduced the basic spreadsheet
concepts in the classroom. Subjects were taught the concepts of cell, row, column, label,
entering cell contents, addressing, formulas, navigation within a spreadsheet, the
mechanism to issue commands through the menu, etc. Since subjects from all four
treatment conditions were present during the lecture, we used only a skeleton menu with
item structure common to both the new and old menus for demonstration purpose. Only
the items File-Retrieve and Block-Format were present in the skeleton menu, the other
items were blanked out as ‘XXX’ on the menu. However, the function and meaning of

each menu item, but not the structure, was explained clearly to the subjects.

Day One began with a 30 minutes guided hands-on exploration of the features of
Lotus followed by a walk through of the skeleton menu. The function and meaning of
each menu item were again explained to the subjects. Subjects were given five practice
trials to familiarize themselves with the task sequence of invoking instructions on the

screen and pressing a key to return to the spreadsheets to perform the task. Subjects were
then left to complete the 30 tasks on their own.
Day Two began with subjects performing the same 30 spreadsheet modificaton

tasks. They were encouraged to use the initial letters of the menu items to invoke the

command instead of using cursor keys and the <return> key to invoke the command. Part

2We call the first day Day O as there was no lab session. Day 0 is just a
lecture to introduce the spreadsheet concepts. Day 0 had no data. Day 1, 2, and 3 had
actual lab sessions to collect data.

123

two of day two was a lecture on more advanced spreadsheet concepts followed by
subjects entering a simple spreadsheet from scratch.

Day Three again began with subjects performing the same 30 spreadsheet tasks.
They were asked to complete the same 30 tasks again after the first round. Thus there

were two complete replications of the trials on the last day.

4.5 The Hypotheses

The inconsistent old Lotus menu does not allow users to form a consistent subgoal
structure to learn and explore the menu. Subjects using the new menu can forma
consistent <object><action> subgoal structure to traverse the menu. They can always
form the subgoal of looking for the object of interest first then the subgoal of looking for
the action to be performed on the object. For the main effect of Menu, we thus expect
subjects given the new menu to perform better than those given the old menu in all four

dependent measures. We state the hypotheses below in their alternate form only.

H1. Subjects given the new <O><A> Lotus menu will have fewer errors than
those given the old menu.

H2. Subjects given the new <O><A> Lotus menu will have fewer tasks
involving backtracking than those given the old menu.

H3. Subjects given the new <O><A> Lotus menu will have fewer tasks using

cursor keys to issue the commands than those given the old menu.

H4. Subjects given the new <O><A> Lotus menu will have shorter time per

keystroke than those given the old menu.

We do not expect any main effect for the independent variable Instructions since

the OA instruction will help the subjects given the new menu but may hamper those

given the old menu. However, we do expect a simple effect of the instruction on the new

124

menu users. Since commands in the old lotus menu can be classified into a few
categories depending on their structure, we need to specify how the instruction format
will affect each of these categories of tasks. We will do this for the analysis for the time
per keystroke. In general, we are looking for the interaction effects between the menu

structure and instruction structure to look like that depicted in Figure 4.5.

i L
>
0
X N -
]
Q hn e
[+
£ i
- N _ B
S _ - Old
@ E - L
g - ="
5 _ - _
S i
5
T T L
g
2] i
Q
[3°] - -
[ae]
o p \ L
o
g New
L L
0 T T
Action-Object Object-Action
Instruction
Figure 4.5 The Hypothesized Interaction Effects between Menu and Instruction

We expect that the new menu will always allow better performance than the old.
However, we expect that the OA instruction will further help the performance of subjects
given the new menu which has an OA structure. That is, we expect a main menu effect
and a simple instruction effect on the new menu users. It is difficult to predict the slope
of the old menu line due to the old menu’s inconsistent structure. One way 1o overcome
this difficulty is to analyze by individual task type. The slope of the old menu line can be
positive as shown, or downward sloping depending on its task menu structure for the task

investigated. If the particular task has a AO menu structure, the slope of the old menu

125

line will be as shown. If the task has an OA menu structure, then the slope of the Old

menu line will be negative like that of the New menu line shown.

To analyze the number of errors, the amount of backtracking, and the number of
tasks using cursors, we will count the occurrences in each task type. Since all the task
types are grouped together in the ANOVA, we cannot predict the slope of the old menu

line. The hypothesis for the interaction effect for menu and instructions on the first three

dependent variables is stated below.

H5. There are significant simple effects of the instruction structure on the new
menu users for the three dependent measures: error rate, number of trials with
backtracking, and number of trials using cursors to issue commands. The direction of the

interaction is shown in Figure 4.5 but the slope of the Old menu line is undetermined.

Hypotheses Regarding Time Per Keystroke for Different Task Types

For the dependent measure of time per keystroke, we will analyze each task type
separately. We can then predict the slope of the old menu line for the time per keystroke
for each task type according to its old menu command structure. Performance of subjects
given the old menu will depend on whether the instruction structure matches the menu
structure for the particular task. Table 4.1 gives the expected outcome of the main effects

and interaction effects by grouping the tasks according to the old menu structure.

For the main effect of the menu structure on the time per keystroke (fourth
column in Table 4.1), we always expect the new menu to allow a shorter time per key
compared to the old menu regardless of task types. Since the new menu has a consistent
OA structure, we expect to see a simple effect that the OA instruction will always help
the users given the new menu to reduce the time per key compared to those given the AO
instruction and the new menu. This is due to our hypothesis that subjects given matching

menu and instruction structure form the best subgoal structure without any extraneous

126

Command The Treatment Effects
Keystrokes (Time per Key in Seconds)
Task Old New Menu Instruction | Menu x Instruction
Menu | Menu
Copy/ /c /bc New better Even _—od
Move
Cells | - new
AU OA
Erase /oe foe New better OA better ~——— od
CCHS \ new
A0 UA
Format | /bf /of New better OA better ~— oid
Cells ~—— e
A0 OA
Justify /bl /ba New better OA better ~— old
Cells \ new
A0 O&X
Format |/wgf |/gf New better OA better? old
All Cells ~—— rew
A0 OA
Justify /wegl /ga New better OA better? old
All Cells ~— v
—AO OA
Set All /wge | /gs New better OA better? old
Column
Width 4_:“”
AO
SetOne | /wcs /cs New better OA better? old
Column
Width %“"‘"
A
Row/ fwdr /rd New better Even - old
Column
Delete ~ new
A0 O&
Row/ [wir /ri New better Even _— old
Column
——— 1EW
Insert
A0 OA

Table 4.1 Hypotheses for the Individual Tasks in the Lotus Experiment

127

subgoals to explore the menu. Table 4.1 shows this interaction effect in the sixth column

as a downward sloping line for the lower new menu line (the darker line).

We generally do not expect a main effect of the instruction structure on the time
per keystroke (fifth column in Table 4.1). The effect of instruction will cancel since the
old menu and new menu have different structures. We only expect to see the main effect
of the OA instruction to be significantly better than the AO instruction for the group of
‘BLOCK’ tasks where both the new and old menu has the same OA structure. For the
third group of “worksheet” tasks in Table 4.1, it is difficult to tell whether the OA
instructions will be better. This group of tasks either has an OOA or an OOO menu

structure. If we can treat these as having OA structure, then OA instruction will be better.

We do not generally expect to see an interaction effect of menu and instruction on
time per key (see Table 4.1, last column). We expect that the OA instructions will help
the new OA menu users even further. The bold horizontal line in Table 4.1 separates the
task types into four groups according to the task’s old menu structure. Copy/Move is by
itself as it is the only one that has an “Action” single level structure. We expect that the
AO instruction structure will aid the old menu users. The next category consists of
commands dealing with a block of cells. Both the new and the old menu have the same
OA structure. We expect that the OA instruction will aid the old menu users. The next
category of tasks has an ambiguous old menu structure. The structure is either OOA or
O0O. We hypothesize that the instruction will have no effect on the old menu users.
The last group of tasks has an OAO old menu structure. If subjects ignore the
“worksheet” item, then the old menu has an AO structure. We will then hypothesize that

the AO instruction will aid the old menu users more than those old menu users given the

QA instruction.

4.6 The Results of the Lotus Menu Traversal Experiment

128

Table 4.2 shows the distribution of subjects across the four treatments. Due to

loss of data through computer disc crashes, only 57 out of the 64 subjects’ data are usable

for analyses. There are no significant differences among the four treatment groups in

terms of attrition rate, sex, average years of computer experience. and the number of

computer novices in the group.

Menuw/Instruction
New/AO |New/OA | Old/AO Old/OA
Total Number of subjects 14 15 14 14
Sex of Subjects 5M 9F 4M 11F ™ TF 10M 4F
Ave Yrs of Computer Experience 1.57 1.92 1.86 1.71
Number of Computer Novices 4 3 4 5

Table 4.2 Distribution of Subjects for the Lotus Experiment

The results generally turned out to be as predicted by our hypotheses. We will

describe the results in the following two sections. The first three dependent variables, the

number of errors, tasks with backtracking, and tasks using cursor keys, are discussed in

the first section. The time per keystroke according to task types follows.

4.6.1 The Number of Errors, Tasks with Backtracking, and Tasks Using

Cursor Keys

Table 4.3 depicts the results of the first three dependent measures. As expected

the new menu allows better performance on all three measures. Two out of the three

instruction main effects are not significant as expected. Two out of the three interaction

129

effects turned out to be as expected. The unexpected results are marked with an 3 in

Table 4.3.
The Dependent Measures
The Independent || Number of Number of Number that
Factors Errors Backtracking use Cursor Keys
Menu New =.700 New =8.250 New =7.900
Old =1.800 Old =22.80 0Old =36.700
p=.0219* p=-0009* p=.0001*
Instruction 0OA=1.550 0A=16.200 0A=24.850 ®
AO=.950 AO=14.850 A0O=19.750
p=.2923 p=.2077 p=.0011*
Menu x /old ——old / old
Instructions I ~ v I e TIEW l\ new
“ p=.0304* p=.8649 p=-0001*
Table 4.3 The Effects of Instruction and Menu on the Number of Errors,

the Number of Tasks with Backtracking and the Number of Tasks
Using Cursor Keys

Number of Errors (Tasks Executed Wrongly)

There were not many errors after the first day as subjects had generally learned to

execute the tasks after the first day. Subjects using the new menu had fewer errors than

subjects using the old menu. A simple effect test shows that the “OA” instruction

hampered the old menu subjects’ performance [F(1,9)=7.945,p=.0201]as six “block

erase” tasks were executed as “worksheet erase” tasks. Also, seven “block format” tasks

of “OLD/OA” subjects were executed as a “global format” task. These two sets of errors

accounted for 50% of the “Old/OA” errors. These errors occur because subjects when

given the “OA” instruction, formulated a subgoal of finding the possible object on the

menu and then the action. They thought that Worksheet possibly fits the description of a

130

block of cells and this triggered them to wander down the wrong path. Since Erase was

at the second level menu of Worksheet, there is no indication to the subjects that they had

traversed down the wrong menu tree.

Instruction
Menu Object-Action Action-Object
New 0 1
Old 8 5

Table 4.4 Number of /IWE Attempts in the Erase Block Command

Table 4.4 shows the number of attempts to issue the “worksheet erase” command
in the four treatment groups. Subjects given the new menu did not encounter such
problems as there was no confusing “worksheet” command at the first level menu. Only
one subject given the new menu attempted the “ global erase” command. Subjects given
the old menu attempted to issue the “worksheet erase” command more frequently. This
phenomenon illustrates the label-following heuristic brought up by Polson and Lewis
(1990). Subjects attempt to execute commands with labels that resembles the description !
of the task. The opportunity for errors was even greater when subjects formed the

subgoal of looking for an object first and found that “worksheet” matched that description

at the first level.

Number of Tasks with Backtracking

The new menu significantly reduces the number of tasks with backtracking. This
confirms that subjects who could form a consistent subgoal structure were able to learn
the menu system faster. The mean number of tasks with backtracking is out of a

possibility of 126 trials (14 subjects3 x 3 sessions x 3 tasks per task type). To allow for

3Results adjusted for New/OA which has 15 subjects.

131

learning, the Day One data are excluded in the analyses. We expect subjects to spend
most of Day One exploring the menu so backtracking will be rampant. However, even an
analysis of Day One data shows that the new menu reduces backtracking [New=7.24,
Old=17.2, F(1,9)=81.81, p=.0001]. Therefore, excluding Day One results will not bias

our resuits.

As expected, the main effect of Instruction is not significant. However, neither
the interaction effect of Menu and Instruction nor the simple effects of instructions are
significant which is contrary to expectations. This can be explained as there were more
typing errors for the “New/OA” subjects since they could use the initial letters of the
menu items to issue commands (see discussion in next section). Typing such letters led
to more opportunity for slips than those simply using cursor and enter keys to issue the

command.

Number of Trials Using Cursor Keys

We again exclude Day One data from the analyses as we expect subjects to have
to explore more during Day One. The new menu significantly reduces the number of
trials using cursor and enter keys to issue commands. The interaction effect between the
menu and instruction structures on the number of trials using cursor keys is also
significant as expected. The “New/OA” subjects’ performance (an average of 2.10
trialsd) is better than the “New/AQ” subjects’ performance (13.70 trials) [F(1,9)=377.84,
p=.0001]. The results show that subjects given the consistent new menu could quickly
learn the menu structure. They could form consistent subgoals and thus could use the

initial letters of the menu items to issue the commands more easily. More subjects (36.70

40ut of a possible 42 tasks (14 subjects x 1 session x 3 tasks).

50ut of a possible 126 trials.

132

trials) using the old menu resorted to using cursor keys to issue commands since they
could not form a consistent subgoal structure. It was easier for them to use the cursor
keys and to look for the menu item that matches one of the subgoals without worrying
about the order of the subgoals. Furthermore, subjects given the consistent menu with the
matching “OA” instruction performed best since they could form the right subgoal
structure as the subgoals were in the order that were conceived in the task space

F(1,9)=106.98, p=.0001]. They did not need extra subgoals to buffer the out of sequence
task action subgoals.

The results show that the keystroke level model’s assumption that task execution
is the same no matter how the task is acquired is not valid here. Subjects acquiring the
task in a way that allows them to form subgoals that are consistent with how they think of

the task, perform better than when the subgoal mismatches the task structure.

The significant effect of instruction on the number of trials using cursor keys is
not expected. This effect can be accounted for by the large number of tasks involving
cursor keys for the “Old/OA” subjects. The object first instruction was more confusing
for subjects using the old menu as the subjects could not learn the menu structure due to
the inconsistent menu organization. For the tasks that has an “AO” old menu structure
(e.g., copy, delete row, etc.), the “OA” instructions caused more errors due to the need to
remap the subgoals. The frequent errors led to slow learning thus subjects needed to use
the cursor keys to issue commands. For the tasks that had an “OA” structure in the old
menu, subjects often were led down the wrong path. There were many objects on the first
level that may suit the description of the objects mentioned in the instructions. The item
“worksheet” is especially confusing since subjects often substituted it for block tasks.

This frequent wrong path again led to slow learning making the use of cursor key

rampant for the “Old/OA” subjects.

133

Number of Trials with Wrong Command in Move

There is an incidental result that gives further evidence that subjects were trying
to form a consistent subgoal structure to traverse the menu. The evidence came from the
“Move$ Block” command. In the new menu, the command is “/ Block Move”, Table 4.5
shows the number of subjects given the new menu that attempted to use the command by
specifying “/ Move” and the reverse scenario described below. Since most subjects given

the New menu use the initial letters to issue the command, we can attribute some of these

errors to slips in typing.

Instruction
Menu Object-Action Action-Object
New 5 3
Old 11 10

Table 4.5 Number of Slips in the Copy/Move Command

The interesting result is from the reverse scenario. Subjects given the old Menu
had an unreasonably high frequency of trying to use the “/ Block Move” command
instead. This reverse mistake cannot be attributed to slips as the subjects had to insert
intentionally the “Block” command before the Move command. Furthermore, since most
subjects given the old menu used cursor keys to issue commands, they had to use the

cursor key to move to the Block command first (not the first item on the first level) before

they could select the “Block” item.

This mistake of trying to use “Block Move” instead of the simple “Move”

command in the old menu can be atributed to subjects trying to form a consistent

Sor Copy

134

<object><action> subgoal structure to traverse the old menu. This shows that the saving
of one keystroke for the move command by moving it up one level is not significant

considering the penalty of possible errors and slow learning.

4.6.2 The Time Per Keystroke

We now describe the results for the time per keystroke by individual task types.

We first describe the overall progression in time over the four sessions before we describe

the time per key for the individual task types.

The Overall Time for the Four Sessions

Figure 4.6 shows the average time per task (excluding time to read instruction and
specify command arguments) over the four sessions. Tasks performed during Day One
took a much longer time as subjects had just started learning the spreadsheet application,
the menu structure and the task concepts. There was a lot of menu exploration and
backtracking. There was a big improvement from Day One to Day Two as subjects had
at least three chances to look at each task type during Day One. For subjects using the
same menu, Day Three performance almost reached asymptote as there was little

difference between the task times for subjects session 3a and session 3b.

From the task time, we see that the new menu allows shorter performance time
from Day 1 onwards. The effect of menu on task time is significant [F(9,27)=14.18,
p=.001]. For the old menu, as expected the effect of instruction on task time is not
significant since individual tasks have different command structures. For the new menu,
the OA instruction allows slightly better performance in the first three sessions but the
effect is not significant. In session 3b. the second time that subjects performed the 30
tasks during the last day, the OA instruction did not help the new menu users. This can

be explained as by then, subjects had memorized the instructions in the desired structure

135

that matches the menu structure. The structure of the instructions was no longer

important.

35T

30 4 +- Old Verb < Old Object

.m- New Verb T New Object

25

20

15

Time in Seconds

10

1L

0 1 1

1)

Session 1 Session 2 Session 3a Session 3b

Figure 4.6 The Time Per Task Over the Four Sessions for the
Different Treatments

The Effects of the Independent Variables on Time Per Key for the 10 Different Tasks

Table 4.6 shows the ANOVA resuits for the time per key for the 10 different task
types. The results are generally as stated in the hypotheses in Table 4.1; but there are a
few exceptions for which we will provide plausible explanations. Results that are

unexpected are marked with “%”” and will be explained in the discussion.

Menu. The “Menu Structure” has a significant effect on the time per key for eight
out of the 10 task types. This shows that subjects given the new menu were able to form
a consistent and efficient subgoal structure to traverse the menu. The “New” menu

reduces time per key for all 10 task types but only eight results are significant.

136

Command The Treatment Effects
Keystrokes (Time per Key in Seconds)
Task Old New Menu Instruction |Menu x Instruction
Menu | Menu
Copy/ fc /bc New=2.101 0A=2.696 old %
Move 01d=2.972 AO=2.355 —
= * = new
Cells p=.0001 p=.876 | p=.8259
Erase /be /be New=1.953 0A=2.919 old *®
Cells 0ld=3.257 AO=2.257 /
= * = * new
p=.0001 p=.0032* X || b= 0132*
Format | /bf /bf New=3.157 |OA=3.436 —— ol
Cells Old=3.874 AO=3.585 -
p=.0080* p=.6039 % || new
AU OA p=3755
Justify | /bl /ba New=2.831 [OA=3.435 ——old
Cells Old=4.355 AO=3.707 -
p=.0001* p=4976 % || new
ACOA p=.8783
Format /wgf | /gf New=1.777 OA=1.866 ——— old
All Cells Old=2.203 AO=2.111 N
p=.0220* p=.1919 | !
AC OA p=.3360
Justify Iwg. /ga New=1.998 OA=1.829 i
All Cells Old=2.130 | AO=2.308 \ o
— — * W
p=.4347 % | p=.0028 Soox e g270m
Set All /wge |/gs New=1.979 OA=2.280 old
Column Old=2.397 | AO=2.086 ,<
Width p=1199 % | p=.4148 ‘m“e‘” 01045
p=.
SetOne | /wcs /cs New=2.668 0OA=2.973 " 0ld
Column Old=3.318 AO0=3.002 ~—
Wid 1 p=.0352* =. e
idth p=.0352 p=.9584 OUE e 7276
Row/ /wdr /rd New=1.744 0A=2.297 —old
Column 0ld=2.829 AO=2.256 .
Del =.0001* =, v
ee_te p=.0001 p=.7406 HOE p=s401
Row/ jwir |/ New=1.609 |OA=1.775 %
Column Old=2.116 |AO=1.944 T o
= * - e [1€EW
Insert p=.0009 p=.2631 L p=6168

Table 4.6 The Results of the Time Per Keystroke for the Different Tasks

137

For “Justify all cells” and “set all column width”, the results are in the predicted
direction but not significant. We can explain this as, since “worksheet” is the first item
on the first level menu, subjects given the old menu often resorted to using the return key
to select the “worksheet” item. Thus, they engaged in a rule-based behavior to hit the ‘/’
key followed by the ‘return’ key for any worksheet command. Since hitting the <return>
key is considerably faster than hitting any letter key, the extra <return> key time is
negligible. This will help the subjects given the old menu since we are considering time
per key, not the total time to issue the command. However, from the results in Table 4.6,
we can still see that for the two other “worksheet” tasks, “format all cells” and “set one
column width,” the subjects given the new menu still performed significantly better than
the subjects given the old menu. Also, we need to consider the previous results on the
number of erroneous trials and trials using cursor keys that showed that subjects given the

old menu had difficulty learning the menu system on the whole.

Instruction. As expected, the “Instruction” structure by itself does not
significantly affect the time per key. Even for the “block” task where the new and old
menus have the same <object><action> structure, the “OA” instruction did not help.
Since the old menu lacks a consistent structure taken as a whole, subjects could not take
advantage of a few tasks that have consistent instruction-menu structure. Since subjects
given the old menu lack a consistent subgoal structure to explore and traverse the menu,

the instruction structure will not matter much to them.

The unexpected reversal in time per key for the “Erase Cells” task where the
“OA” subjects have a higher time per key than the “AO” subjects can be explained easily.
The higher time per key for the “OA” subjects is due to subjects given the old menu
trying to issue the ‘“Worksheet Erase” command instead, causing backtracking (see

discussion in previous section).

138

Menu x Instruction. The directions of the interaction effect sof menu and
instruction on the time per key (Column 6 in Figure 4.6) generally turned out as
hypothesized in Table 4.1. However, only three out of the ten interaction effects are
significant and only one (Justify all cells, p=.0003) out of the ten simple effects of
instruction on the new menu users is significant. This indicates that instruction is
possibly a weaker manipulation of how users think of the task. Since subjects saw the
same instructions repeatedly, the instruction structure may not matter after subjects had
seen the instruction a few times. They may have memorized the instruction in the
structure most desirable to them, i.e., <O><A> or <A><O>. However, if we again
consider the results discussed in the previous section on the number of erroneous tasks,
the number of tasks with backtracking, and the number of tasks using cursor keys, the
instruction format does have an effect on the subjects’ ability to learn and traverse the

menu system.

Seven out of the ten menu and instruction interaction effects are in the direction
predicted in Table 4.1. One outlier, the “Erase Cells” task, can be explained easily.
Subjects given the old menu performed poorly when given the OA menu as they were
trying to use the “worksheet erase” command instead (see discussion above). This causes

the old menu line to slope upwards instead of downwards as predicted.

There are no good explanations for the other two outliers. For the “Copy/Move”
task, the “OA” instruction unexpectedly did not help the new menu users. This may be
attributed to the wordings in the instructions. For “Copy/Move” instructions, we did not
describe the task directly as “For the Block of cells, Move them to...” but rather, for
example, “For the labels in the column headings, Move them to...”. This may have

caused users not to associate “Copy/Move” task as a “block” command for the “New”

menu users.

139

For the last task in Table 4.6, the slope of the old menu line is not as expected.
However, we mentioned in the section on hypotheses that the prediction depends on how
subjects view the structure of the old menu for the “Insert Row" task. The old menu
structure for this task has an <O><A><O> structure and the prediction can be either way

depending on whether subjects considered the “worksheet” item as an object.

In conclusion, we do find that the interaction effects are generally as predicted in
the hypotheses. The results in this section together with results from the previous
sections show that consistent menu structure allows users to form a consistent subgoal
structure to learn and traverse the menu. A matching instruction structure will further

help users traverse the menu by avoiding the use of extra subgoals to buffer the out of

sequence action subgoals.

4.7 Discussion of Results

The results of the Lotus Menu traversal experiment again helps to illustrate the
subgoal theory. When the interface does not allow users to execute subgoals in the
sequence conceived in the task space, learning and performance are hampered. This
again shows that the KLM assumption of independence between task acquisition and task
execution is not valid in this situation. The instruction format dictates how users acquire
the task and the menu format dictates how users can execute this task. When there is a

task-system mismatch, users need extra subgoals to buffer the out of order subgoals

formulated in the task space thus affecting the performance.

This experiment again illustrates why a simple qualitative difference in the
interface design can lead to big differences in performance although the number of
keystrokes remains the same. We again use the subgoal structure to explain the
performance differences. It is whether the interface allows the execution of the subgoal

structure formed in the task space that is important rather than the final keystroke count.

4.8 Conclusion

This chapter describes yet another experiment to illustrate how subgoals are used
to bridge the gap between the task and system space. In Chapter 3, we described the
formula editor experiment where the task and system space operate on different objects.
Here, we describe a Lotus menu traversal experiment where the task and system space
operate on different sequences of action subgoals. Again, subgoals extraneous to the task
need to be created to bridge the task-system gap. These two experiments taken together
illustrate the importance of making the mechanisms of the system match the thoughts and
goals of the user. When there is a task-system match in terms of the object structure
manipulated or the order of action sequence allowed, there is a higher likelihood that
users can learn to use the system faster and progress to rule-based or skill-based
behaviors. Our theory and experiment explain that these performance improvement gains

are due to the elimination of the planning, monitoring, and validating of extraneous

subgoals.

CHAPTER §
GENERAL DISCUSSION AND A DESIGN METHOD

In this chapter, we will discuss the contributions and implications of this research,
and the ways this research may be extended in the future. To conclude this thesis, we
present a design method for designing better interfaces based on the principles learned

from this research.

5.1 Contributions of This Research

This research contributes to the cumulative HCI research literature and in
particular, contributes to the cognitive modeling approach. It provides a comprehensive
framework to unify the fragmented HCI theories and cognitive models. The subgoal
theory extends the current GOMS models by addressing non-optimal behavior and
demonstrating sources of some performance difficulties. The two empirical studies and
their results illustrate design principles that can help designers to create better interfaces
that eliminate such performance difficulties. We will present the design principles as a

design method at the end of this chapter. We elaborate on some of these contributions

below.

Develops an HCI Cognitive Modeling Framework

This research develops a conceptual HCI framework that integrates important
theories in the HCI and human factors literature. The framework is integrative as it
provides a classification scheme to help researchers structure HCI literature and

investigate the stages of activities and cognitive processes underlying HCI activities. The

141

142

literature review in Chapter Two illustrates how the framework is used to integrate and
view the different HCI cognitive models as addressing different facets of the same design
issues. The framework is integrative also in providing means for researchers and
designers to draw on other relevant human behavior hierature to address HCI issues.
Furthermore, the framework is analytical as it points out areas that need further research
by looking at which areas of the framework are not addressed by current HCI theories.
The framework is also prescriptive as it brings insights to designers since it identifies
bottlenecks and highlights critical design issues in the HCI activity cycle. This
framework thus has important implications for the research and design of computer

interfaces.

Models the Cognitive Mechanism that underlies Task-System Mismatch

This research investigates how people plan and execute tasks, and in particular
how subgoals are formed during computer supported activities. This research proposes a
subgoal theory that task-system mismatch will lead the users to create extraneous
subgoals that are difficult to form, monitor, and validate. This cognitive mechanism of
creating extra subgoals contributes to making an interface difficult to use. For example,
we illustrate using the formula editor experiment how users had to create extra subgoals

when the task and system space operate on different object structures.

Extends Current GOMS Models

This research suggests that we should investigate knowledge-based activities
(those involving problem solving) where the subgoals play an important role. This
research suggests ways that the GOMS model can be extended to address non-optimal
behavior by examining the subgoal structures. This research extends the state of the art
of the KLM by modeling the behavioral effects when two interfaces generate about the

same number of keystrokes but require very different subgoal structures for task

143

performance. This research extends the GOMS model to address the mappings from the
task space to the system space. Current GOMS models and the extensions only address
the system space through the modeling of the operations in the system space. This
research addresses how performance can be affected by the way users decompose the task

goal into subgoals as constrained by the system space.

The formula editor study shows that why certain interface will not allow skill-
based behavior since the subgoal structures are t00 complicated, making users overextend
their working memory that leads to erroneous and slow performance. The Lotus menu
study show how we can extend the KLM to address novice learning behavior by
examining the subgoal structures users employ to raverse the menu system. The two
studies together illustrate that consistency within an interface (modeled by TAG [Payne
& Green, 1986]) is important but consistency between how users think of the task with
the way the interface allows the task to be executed (modeled by the subgoal theory) is

also important.

Suggests Design Principles for Formula Editors and Hierarchical Menus

The empirical work show us how some redesign can drastically reduce the
complexity of the interaction process. The formula editor experiment suggests that
editors should work with the structure of the language it manipulates. This avoids the
need for extra subgoals to overcome the unnatural mapping between the task language
and the system language. The Lotus menu traversal experiment suggests that the internal
consistency of a menu structure is important, but it is also important that the structure be
consistent with how the users think of the tasks. This consistency between users’ view of

the task and the interface eliminates the need for users to create extra subgoals to

overcome the unnatural mapping.

144

5.2 Implications of this Research

The HCI framework and the theory of the roles of subgoal formulation in bridging

task-system mismatches have important implications for both researchers and

practitioners.

The HCI Framework and Research

This research points out that it is premature to develop a comprehensive cognitive
model as the underlying cognitive theories are fragmented and the resulting model may
be too complicated for practical use. The HCI framework helps to overcome the need to
have a comprehensive HCI performance theory. It helps researchers and designers
understand the activities and the cognitive processes involved in HCI thus knowing how
to draw on the related human behavior theories from different fields. The HCI
framework points out the particular cognitive processes that need to be addressed at the
various stages of HCI activities. Consequently, interface designers can use the
framework to draw on different theories, HCI cognitive models, and empirical results to

address the design issues currently under focus.

The Future Need for HCI Research

The HCI framework provides a means to review and structure the existing HCI
empirical literature. For example, this research uses the framework to classify the Formal
Grammar family of models as rule-based models as they only address that aspect of the
framework. The framework helps researchers identify areas that need further research
and suggest hypotheses for testing. For example, we use the framework in this research
to review the HCI liter>ture and find that there is a lack of research investigating
knowledge-based activities and the feedback portion of the HCI framework. We then

state the subgoal theory to address the knowledge-based behavior not modeled by current

HCI models.

Some Questions Answered

By investigating how users form subgoals as a cognitive control mechanism for
knowledge-based behavior, this research begins to answer questions brought up in the
literature reviewed in Chapter 2. These answers are not yet complete but point to
possible research directions that extend the subgoal theory to cover situations that current
HCI models do not address. Examples of these questions and the answers that this
research begins to provide are:

How do people move smoothly between skilled performance and problem solving?
They use subgoals formulation as a cognitive control mechanism to move from
problem solving behavior to skill-based behavior and vice versa. Subgoals have
a diminished role in skill-based behavior but are essential in knowledge-based

behavior.

How do we design for consistent user interfaces?
We try to design an interface such that it is consistent with how the users think
about the object structure and action sequence in the task space. This way,
extraneous subgoals can be minimized and the system space made as transparent

to the users as possible.

How do people produce and manage errors?
People produce errors when there is a slip during skill-based behavior, a mistake
during rule-based behavior, or a resource error during knowledge-based
behavior. People manage errors by reverting to a higher level cognitive control
and instigating a new subgoal to reverse the damage done by the error.

What contributes to mental workload?
The planning, monitoring, and the validating of extraneous subgoals consume

large amount of working memory capacity.

Which stages of the activities take the longest time?
The planning, monitoring, and validating of extraneous subgoals take the longest
time in the HCI cycle of activities. The number of keystrokes different interfaces
require are not important unless the interfaces also lead users to form the same

subgoal structure.

146

Implications of Findings for Interface Design

This research shows that GOMS in its current form is incomplete for use by
system designers. An important part of designing a system is setting the tasks that users
will perform, the sequence of objects to be selected and actions on those objects. The
system designer needs to model how users will translate the external tasks to the internal
subgoal sequence of actions upon the objects. The implications of the findings in this
research for interface design are two fold. First, it illustrates that it is imperative that
interfaces allow users to form subgoals that reflect the task structure as conceived in the
user’s task space. Second, it is also imperative that the users first be trained to
decompose complex tasks into appropriate subgoals in the task space. That is, users need
to have the appropriate domain knowledge before using the system. With this qualitative
aspect of interface design solved, the quantitative predictions of HCI cognitive models

can be made even more rigorous and accurate.

5.3 Possible_ Future Research

This research has some limitations reflecting deliberate choices intended to keep
the research within scope and the discussions within reasonable length. We suggest some

possible future research to address these shortcomings.

The HCI Framework

The HCI Framework attempts to address all relevant HCI issues making it a
potentially comprehensive model. However, the price to pay may be unnecessary
complexity and an over-simplification of some important underlying issues. Further
research will need to address exactly which portion of the framework should be applied in
which design situations. Ultimately, the framework can form the basis of an expert

system for designers (e.g., [Barnard, Wilson, & Maclean, 1987]).

147

Furthermore, the framework should be extended to address how and when users
engage in the different levels of behavior in the framework. The framework in its present
form does not describe how the transition between the different levels of behavior occurs,
merely that it occurs. We can draw on research on skill acquisition (e.g., [Newell &
Rosenbloom, 1981]) and problem solving (e.g., [Newell & Simon, 1972}) to help us

refine our framework and the design theories it can generate.

The framework also addresses only situations where the task goals are well
defined. Future research may extend the framework to address situations where the task
goals are not well defined, €.g., creative design situations. We can draw on the findings
and theories in the design problem space research (e.g., [Goel & Pirolli, 1989; Reitman,

1965]).

The current framework also does not address how users formulate subgoals.
There is a need to understand how users formulate subgoals to execute complicated tasks
or to overcome a bad interface. Besides creating extra subgoals, users can sometimes
restate the goals to suit the interface. We need to understand the different cognitive
strategies during knowledge-based behavior for subgoals formulation. For example, the
Soar [Laird,Newell, & Rosenbloom, 1987] cognitive architecture can provide the

mechanisms to help us model how users formulate subgoals.

The Subgoal Theory

The subgoal theory in its present form is only a qualitative theory of how users
employ subgoals to bridge the task-system space mismatches. It does not attempt to
quantify how extra subgoals will affect the performance time; nor does it attempt to
quantify how extra subgoals will contribute to the needs for planning and evaluation.
Future research can extend in this direction. We will need to model explicitly the process

of storing and retrieving subgoals from working memory, the scanning process to acquire

148

the task goal, the planning process to decompose the task goal, and the checking process

to ensure that a subgoal is accomplished successfully.

The subgoal theory also does not address the feedback loop portion of the HCI
framework. Future research can address how good feedback may reduce the need for
planning and evaluation. For example, we can incorporate the structural display of

formulas for the semantic editor and see how that will further help users reduce the needs

for planning and evaluation.

We have not presented a design method that can be applied by designers to create
an interface that avoids ‘bad’ subgoal structure. It is important that useful theory should

lead to real world application. We will sketch a design method in the last section.

The Experiments

We can extend the empirical studies used in this research in many ways to
generalize the results and to address other issues. We can extend the formula editor study
to other functional languages. We can try to apply the design principle in creating the
semantic editor to, for example, a LISP statement editor. We also can extend the formula
editor study by addressing the feedback loop. We can see whether a structural display of
the formulas for the semantic editor further improves subjects’ performance; or how a
linear editor with structural display may eliminate some planning and evaluation needs.
The performance differences between subjects using the semantic editor with and without

the structural display can shed light on the role that feedback plays.

We also can extend the Lotus menu study to other applications like database
query. In database query, users also conceive a subgoal sequence in the task space to
extract the information needed. Depending on how well the interface language supports

this subgoal structure, users may have difficulties, e.g., forgetting the “JOIN” statement

in a relational database query language [Smelcer, 1989].

149

In summary, this research provides a unifying explanation of separate results, and
begins to develop a design method that can help designers create better interfaces.

Specifically, these interfaces would allow subjects to form subgoal structures that reflects

the task structure.

54 A Design Method for Creating Good Interfaces

We discussed in Chapter Two that the purpose of the interface is to support task
performance. There are three components to how well a user can perform tasks with a
system: (a) the user’s task domain knowledge and system knowledge; (b) the concepts
and structures represented in the system space; and (C) how well the interface bridges the
task-system space. All three aspects can improve task performance. Here we have
assumed that the user is a task domain expert and have not explored that aspect further.
The user we have focussed on knows what the task goals are in our framework but may

not know the methods to accomplish the task goals in that particular system context.

The first possible way to support task performance is to train the users on the
system's methods, those system commands available that can achieve the task regardless
of how the task goals are conceived in the task space. This is a brute force method to
improve task performance by forcing users to adapt to the interface. This is certainly not
an ideal solution, and may have insurmountable long term costs. In a previous
longitudinal study (in preparation), we found subjects using Lotus spreadsheet still
committed many errors at the end of the two year period. Also, in the formula editor
study, we show that the linear editor imposed so much working memory load on the users

making transition into skill-based behaviors impossible for the users.

The next alternative to improve task performance is to improve the target system
language to match the concepts and structures in the task space. This is rying to bring

the system space closer to the task space. For example, object-oriented programming

150

languages provide better concepts and structures for programming complex object
relationships; a direct manipulation interface provides a direct mapping of the structures
for two-dimensional drawing, etc. This is a much more desirable way to improve task
performance. However, this route is not available if users are not willing to learn a new
interface language, or the underlying technology is not viable for supporting a new

language. For example, a text-based terminal will not support a direct manipulation
interface.

The third alternative to improve task performance is to design a better interface to
bridge the task space and the system space. The interface shields the underlying
complexity of the system language from the users by providing tools to bridge the task-
system space. Using our semantic editor as an example, although the target language is
still linear text, the semantic editor effectively bridges the task-system space by
manipulating hierarchical formula structures in the task space. Another example will be
the reorganized Lotus menu system that presents a rather complicated system command

structure to the users in a consistent and logical way where the items sought are found in

the order they are sought.

In short, a good interface should focus on the task domain and make the
“mechanisms of the system match the thoughts and goals of the user” [Hutchins,Hollan,
& Norman, 1986]. We want to design interfaces that help users accomplish task goals
without introducing any subgoals extraneous to the task goals. This is achieved by

making the system as transparent as possible to the users. We outline below a design
method based on this principle.
The following design method assumes that the designer has access to the users’

task domain knowledge. The designer is either a task domain expert or has access to a

task domain expert. The task domain expert knows all the task goals in the task domain.

151
Step 1. List the Task Goals, Objects and Actions in the Task Space

Ask the task domain expert to list all possible task goals in the task space. We
discussed what task goals are in Chapter Two where they are defined as the smallest task
that can be couched in the task domain language. For example, in the spreadsheet
domain, a task goal is to ‘insert a column.” All possible objects and actions of interest
related to the task goals in the task space are also solicited from the task domain expert.
For example, objects in the spreadsheet domains are column, row, cell, etc.; actions in

the spreadsheet domain are insert, delete, copy, move, etc.

Step 2. List the Objects and Actions in the System Space

The designer will list all the Objects and Actions s/he intends to include in the
system space. The designer next evaluates whether these objects and actions are the same
as those listed by the task domain expert; whether they refer to the same object structures
and concepts in the task space. If not, the designer has to think how to bring the objects
and actions in the system space to match those in the task space. Ideally, the objects and

actions in the task and system space should be identical.

Step 3. List the Methods to Accomplish Each Task Goal

The designer at this stage will list the methods provided by the interface to
achieve each task goal. The designer at this juncture will avoid providing multiple
methods for one task goal to avoid unnecessary complications. Each method will consist
of a set of operations (actions upon objects) and/or subgoals to accomplish the task goal.
The designer confirms with the task domain expert that the methods reflect the ways the
expert will break the task goals into smaller subgoals; i.e., the subgoal structure reflects
the task structure. If not, the designers will need to provide different operators that result

in a subgoal structure that reflects the task structure.

152

Step 4. Evaluate the Method/Subgoal ! Structure

The designer can then evaluate the methods/subgoals by coding them using for

example the GOMS model notation. The purpose of this step is to evaluate the structures

of the methods and subgoals. The GOMS notation will reveal how long the

methods/subgoals are, how many steps each method contains, whether the steps have a

consistent and logical structure, etc. The method/subgoal structures revealed can suggest

many improvements to the interface. The designer thus will evaluate:

1.

Are the methods too long?

Methods should not contain more than five to seven steps. Long methods will
create unnecessary memory load. Any methods that contain too long an action
sequence must be broken down into smaller subgoals. Alternatively, the interface

can provide higher order operators that accomplish multiple subgoals to shorten

the method.

Do the methods require excessive planning or evaluation?

Try to eliminate long planning or evaluation by making the method to accomplish
the subgoal easy to acquire and evaluate. Methods that reflect the task structure
should be easier to acquire and evaluate. The interface also should provide easily

identifiable feedback that indicates when the methods are executed successfully.

Do the methods allow users to execute task actions in the sequence conceived in

the task space?

Methods must specify subgoals in a sequence that reflects the way users will

decompose the task goal. If not, redefine the method.

1We explain in Chapter Two that methods are means to accomplish task

goals and subgoals. We will use method and subgoal interchangeably in the following
discussion.

153

4. Are the methods/subgoals distinct and independent?
The delimitation of each subgoal should be distinct so that it is easy to acquire.
Subgoals should be independent in that one uncompleted subgoal should not
generate another subgoal. If a subgoal triggers another subgoal, there should be
some visual feedback to remind users that there is a subgoal not completed. The
methods should not generate nested subgoals that quickly stack up and exceed
memory load. Methods should have self-closure in that they do not generate

subgoals recursively.

5. Are the subgoals/methods meaningful and complete and reflect the task space's

objects and actions?
The subgoals should reflect the concepts and actions in the task space so that they

are meaningful and not extraneous as a result of having to use a bad interface.

6. Do the methods/subgoals have consistent grammar and semantics?
There should be a higher order rule governing a family of methods/subgoals fora
set of related task goals such that the subgoals have consistent syntax and
semantics. Consistent syntactic structure will ensure subgoals have consistent
ordering of “object” and “action” within each subgoal. Consistent semantic
structure will ensure subgoals are executed in the sequence as conceived in the

task space.

7. Do the methods/subgoals have only a few parameters?
Each subgoal should not have too many parameters that need to be specified. If

50, the system must prompt the users for all parameters needed.

Step 5. Evaluate the Interface Support for Subgoal Accomplishment

The designer must next investigate how well the interface supports the execution

of the subgoals.

154

1. Does the interface allow rapid learning of the commands or actions to execute the
subgoals?
The interface must make the repertoire of available commands or actions to
accomplish the subgoals salient. Given a subgoal, the interface must allow a
quick pruning of the search space so that the user can discover the command or
actions to execute the subgoal quickly. There must be no confusing alternatives

that may seem to accomplish the same subgoal but with totally different

outcomes.

2. Does system feedback support the execution of the subgoal?

The system should provide feedback that the chosen action or command is acting
on the object of interest. Also, the system should provide feedback to indicate

clearly whether a subgoal has been executed successfully.

3. Does the interface provide error recovery procedures?
The interface should provide obvious and readily available error recovery

procedures so that users can reverse the system state to an easily recognizable

previous state.

Step 6. Final Evaluation

The designer should put the revised interface through its paces by asking users in
the target domain to use the system. Their feedback and performance bottlenecks should
further help refine the final design. They should be asked whether the interface allows
them to decompose and execute the tasks that feels ‘right’ and ‘natural’ to them. Their
keystroke time can be checked for unusual long pauses or pauses at the wrong locations

against the keystroke level model’s parameters.

APPENDICES

155

156

APPENDIX A
THE INSTRUCTIONS FOR THE FORMULA EDITOR PILOT STUDY

Instructions for Subjects
Your task is very simple. It is just to key in 20 formulas. The only difficult part might be
having you insert parentheses so that the operations are done in the right order as

conveyed in the formula.

You only need to use a restricted set of keys, mainly the keys on the numeric keypad and
a few other keys nearby. The variables are only the numbers 1, 2,3,4,5,6. All the
keystrokes are simple keystrokes. <shift> and <ctrl> keys are not needed. Please take a

few minutes to familiarize yourself with the keyboard. Go through all the relevant keys

with white key labels on them.

<<--> deletes the previous character at the cursor position.
<delete> deletes the character at the cursor.

<eol> brings the cursor to the end of the line.

<start> clears the window before keying in a new formuia.
<0.5> inserts 0.5 for square root operation.

Inserting a character within a string takes effect at the cursor position and will push all

characters a position to the right starting at the cursor position.

The formulas are presented to you one at a time on a card (show card). At the beginning
of the trial, press <start>, then look at a card. When you are ready just begin typing.

When you are done, just hit the <return> key. Press <start> again and look at the next

card, and so on.

157

The experiment has three parts. Please inform the experimenter when you are done with

each part or when you encounter any difficulties.

1. Practice Run

2

Actual Trials
3. Circle conceptual chunks on formula sheets.

Please take some time to look at each formula and cricle chunks within the formula you
feel are the things that go together that form conceptually complete units. You can make

circles that overlaps or within other circles.

FORMULAS IN THE FORMULA EDITOR PILOT STUDY

APPENDIX B

I. PRACTICE TRIALS

1+2”‘3/4+52
(12’
1+2%3/4+~/3+6
(1+2)*(3+4)

1*[(2+3)*(5-6)]

3+4
5+6

(3+5)*6
(3+2)*(6+5)

[3;4}6*[213}[3*(74-2)]2

1+((2*3)+[2*(3+[4*£'§])]}

II. ACTUAL TRIALS
24753
L —
4+(5*6)
2
, UB+)*615)
T (3*D)+(6*)
R
e
30 2 -
35
1426
4.
NES
243
24 NTF2H o
5 4+5

2
1+(2*3)

160
4

3+(2*3)
6. 5
(2*%4)+(3*2)
7. 1
{[(2+2)*3]1/2}
4

8. 2
4+2*{[%—£J +4}

N
442
2)2
2*(@}3

4
2+(4%2)

i)

10.

161

APPENDIX C
AN EXAMPLE OF THE FORMULA CHUNKING RESULTS

Please cirlce the conceptual chunks

———

T —— N x
- - N N

(54 2).\\\\? (4/Q+3)N.5)
&@;)@?)/@U>)

—

C o —
S

””"\\

—

(SHERE2)PFIP S+

P oSS
T —
- /%‘d\——\\ Ve

@S UEDD

162

APPENDIX D
THE FORMULAS IN THE FORMULA EDITOR EXPERIMENT

6-4
2

4+3

3457,
3
(1+2)"4

2

JToovla.
1+2 {4-0- 243
4*(5+6)

—_—

(6+2)*3
V445 *4

442

2
(1+5) * (1+3)

sl

10.

11.

12.

13.

14.

15.

163
(1+2) *5

33
2+3

[(34—5)*6]5 +4
(3+2)*(6+5)

2

5
4'(3+4*(4_2) J

(2+4)*3

{(V(2+2)*3 +5}*2

4
(2*3) +3
AL
2 4+{2 +3f

(345)*3
5+ 3-1
446

16.

17.

18.

19.

20

164

\ 442

2'(2+ﬁ)

SN

3)
(6-2)*N1°2 /248

L

165

APPENDIX E
THE CLASSIFICATION OF FORMULAS USED IN THE
EDITOR EXPERIMENT

Independent Variable: Depth (2,3,4,5), Skewness (left, right), Decay (short. long)

(Note: The number following the classification below, €.g., Left Short: 35, is the Formula

number in the experiment. See Appendix D for a listing of the typeset formulas present

in the experiment.)

Depth: 2

Left Short:5 ((6+2) *3) /((4+8)"2*4)

Left Long:6 (4+2) /((1+5)*(1+3) "2)

Right Short:13 ((2+4)*3)/(2*4+4/ (2+3))

Right Long:7 ((3+1)*4/(2+3)1"3

Depth: 3

Left Short:9 (((3+8)*xA) ~S+4) / ((3+2) *¢)
Left Long:8 ((1+2)*5) /(((4+2) /(2+3))72)

Right Short:16 ((4+42)72) /(2*(2+2/(2+4)))

Right Long:14 ((3+5)*3)/(5*((_3—1)/(4+6)L)

166

Depth: 4

Left Short:15 4/ (2+((((4+2)/3)72+4))

Left Long:17 3*((((1+2)/4*6) 2V +3/ (O+2))

Right Short:11 ((2+4) / (4% (2+42/ (3+2)))) "3

Right Long:18 ((1=-2)* ((1+2)72)/ (3/(4+5111) /3
Depth: 5

Left Short:12 (2+4) *3/(((((2+2)*3)72) +D5) *2)

Left Long:19 (((((2+3)/3+2)*(3+3)y "2V +3) / (1+2)
Right Short:10 2/(4*(3+(5/(4*(4=-2)))))

Right Long:20 (1/(5*(1/(542/(5=3)1)1)"2

167

APPENDIX F
THE INSTRUCTIONS FOR THE PRACTICE SESSION IN
THE EDITOR EXPERIMENT

GENERAL INSTRUCTIONS

Explain formulas, its semantic units. (Show Grammar slide)
(Show Formula-slide). Your task is just to key in formulas like this.

Do not evaluate the formula, eg., do not type in 2+3 as 5. Do not rearrange the formula,

1
eg.2T3is 1/(2*3) and not 1/2/3.

Enclose each complex object with parentheses.

1+2 .
5*——2+3 is 5*((1+2)/(2+3))

Your task is just to type in some formulas using two different editors. One editor will be
one you are very familiar with, as used in spreadsheet programs, a left-to-right linear
editor. The other editor, which works with the semantic units of the formula, is a

semantic editor.

You will use only the keys with stickers on them. The keys are color coded: operators,
variables, cursor movement keys, parentheses, undo and start and finish keys. The

variables are only the numbers 1, 2, 3, 4, 5, 6. A means raise to the power of, eg. V142 is

(142).5. The <BkSp> deletes the character immediately to the left of the cursor.
p

All the keystrokes are simple keystrokes. <shift> and <ctrl> keys are not needed. (Show

Keyboard Map).

168

The formulas are presented to you one at a time (show card) except during the training
session. Before looking at the formula. press <start>. Look carefully at the formula and
make sure you understand its structure before you start typing. When you are done with
the formula, press the <end> key. Press <start> again and look at the next formula and
continue likewise till the last formula. Do not spend time checking the correctness of the

formula once you are done. Work as quickly and as accurately as you can.

(Demonstrate Linear editor)

(Demonstrate Semantic Editor)

Instructions for Linear Editor

You are going to use an ordinary text editor to type in the formulas in a left to right

fashion. The left and right arrows keys and the eol, sol keys are provided for you to

move around in the formula.
Let's go through some examples. (Let subjects go through Warm Up session A & B)

The purpose of the experiment is not to test your knowledge of the precedence of
operators. Type the parentheses as you see them in the formula on the card. Insert extra

parentheses around complex operants which do not have parentheses around them.

Go through the rest of the practice formulas.

Go through dry run.

169

Instructions for Semantic Editor

You are going to learn how to use an editor that works with the operants of the formula as

units. This will eliminate the need to type the parantheses explicitly.

Parantheses in formulas are used to delimit complex operants. Formulas are built up

recursively with the fundamental structure of <operant><operator><operant>.
(Go through example on overhead and work out example by hand)

The editor utilizes the concept by allowing you to work with operants as units in a left to

right fashion. A special key <()> is used to create complex operant>.

(Demonstration of how complex operants are created with <()>, relate them back to

concept on paper)
(Let subjects go through training session A, B, C and D)

Notice that you never need to close unbalanced parentheses and you never need to plan
for open parentheses needed. The only preplaning is to use <()> after an operator

whenever a complex operant is to follow the operator.
(Show undo capability of editor)
(Go through session E)

(Go through session F)

170

1. Warming Up for Linzar Editor

(Fonts and spacings between formulas are much bigger in actual material used by

subjects)

A. Familiarization with keyboard
142+34+445+6

1%¥2-3+4/5+V6

B. Typing parentheses as they are presented
(1+2)*3

[(1+2)*3 172

1*{ 2+ 3/(4-5)] }

C. More practice with some needs to create extra parantheses
32,
5+2

Ans: ((3-2)/(5+2))*4

_ 3+
(5+6)*(1+2)

Ans: (3+4)/((5+6)*(1+2))

171
A / 3+4
N 6
2+3

Ans: (((3+4)/6)1.5)/(2+3)

D. Complex Formula
2+ o)

Ans: 1+(2+3)/Q2+((3/(4+2)7.5)))

1 2
(72- +5}“(6-2)

2
[(5*1) +6]*4

Ans: (((1/@-2)+5)*((6-)"A((5*1)A2)+6)*4)

EGE]

2

Ans: ((B*((((2+3)/4)5)+2)"2)/2

5
2

NE

Ans: ((((5-1)/3)+(1/(2-5)))*2)/(((3-2)/3)".5)

172

1. Warming Up for Semarntic Editor

(Fonts and spacings between formulas are much bigger in actual material used by

subjects)
A. Familiarization with keyboard
1+2+3+4+5+6

1%2-3+4/5+6 same as in the linear editor

B. Creating Left Complex Operand (ie left parenthesis) by using '()’ key before

operator
(1+2)*3

key: 1+2 P*3

[(142)*3 A2
key: 142 P*3 PA2

[(1+2)*3+4+5 1*6 Note: Consecutive highlighting to create operant
Key: 142 P*3 P+4 +5 PP*6

Note: you never have to plan for left parentheses, they are created
automatically when complex operant is created.

173
C. Creating right complex operant by using ‘() key after operator
1*(2+3)
key: 1*P 2+3

1*{ 24 3/(4-5) 1 }
key: 1*P 2+P 3/P 4-5

The parentheses are automatically created when the complex
operant is created.

D. Left and right complex operants
(1+2)*(3+4)

key: 1+2 P*P 3+4

1 *[(2+3)*(5-6)] Note: 2+3 is keyed in before making it (2+3)*
Never create two complex operants in a row

Key: 1*P 2+3 P*P 5-6

I*({ [(2+3)*4 1+5 }*6)

key: 1*P 2+3 P*4 P+5 P*6

174

3+4
(5+6)*(1+2)

Note: Operant before operatore created last,

operant after operator created first

Key: 3+4 P/P 5+6 P*P 1+2

NES
6

2+3

Key: 3+4 P/6 PAS P/P 2+3

3+4
T*(1+2)

2+3

Key: 3+4 P/6 PA5 P*P 1+2 PPP/P 2+3

E.

175

Correcting Mistakes

Undo Facility

1.

Undo highlighting

1+2+3+4

Undo Operator and parentheses created after highlighting and pressing the

operator key.

Undo parenthese created after operator.

1+()

Simply backspace for wrong variable or operator.

No backspace over parentheses, need to retype

176

F. Complex Formula
2+3
1+ —-—‘—3—
2+)

Ans: 1+((2+3)/Q2+((3/(4+2)M.5)))

Key: 1+P 2+3 P/P 2+P 3/P 4+2 PAS

1 2
(E +5}'(6-2)

2
[(5*1) +6] *4

Ans: (((1/(4-2))+5)*((6-2)"2)A(((5* 1)*2)+6)*4)

Key: 1/P 4-2 PPP+5 P*P 6-2 PA2 PPPP/P 5*%1 PA2 P+6 P*4

e

2

Ans: ((3*((((2+3)/4)15)+2)"2)/2
Key: 3*P 2+3 P/4 PA5 P+2 PPPA2 P/2

Ans: ((((5-1)/3)+(1/(2-5)))*2)/(((3-2)/3)*.5)
Key: 5-1 P/3 P+P 1/P 2-5 PPPPP*2 P/P 3-2 P/3 PA5

177

APPENDIX G
THE TASKS AND SPREADSHEETS IN THE LOTUS STUDY

Tasks on Acma

1 Change the width of column A to 5

Change the width of column B to 26
2. Change the defauit column width to 4
3 Delete the row labeled "other Sources”
4 Copy the formula for "Ending Cash Balance” in cell 27 to cell d26
5 Insert a column before column a
6 Make Default label justification: Left
7 Center all the column Headings (Ds..E4)

8 Make default Formats for numbers: Fixed with 0 decimal point

9 Format the two numbers in "Finding Cash Balance" as currency with

2 decimal point

10 Erase the two numbers in Dividends

ACMA COMPANY
CASH BUDGET

Cash Receipts
Cash Sales
Collect:ons from Customers
Short-tarm 3orrowing
Other Sources
Other Current Assets

Total Cash Recelpts

Cash Disbursements
Manufacturing Costs
Operating Expenses
Capital Expenditures
Dividends
Other Disbursements

Total Cash Disbursements

Net Cash Provided (applied)
Beginning Cash Balance

ENDING CASH BALANCE

178

‘November:
1984

Dec
2984

emper:

o o= 1D

$3,764.
§1.383.
$4,685.
$14,677.
$8,660.

g9 198

$2,699.
$4,569.
§12,914.
$7,324.

$33,175.

$8,353.
$10,937.
$13.034.
$8,311.
$14,745.

$20,000.

00) (

§55,380.

§22,205.
2,450.

179

Tasks on Best

10

Insert a row before "year Ending"

Right Justify the column heading in (D3..E4)

Move Column Headings (AS5..E6) to the bottom of the spreadsheet
Make Default label Justificaiton: Center

Change the width of Column C to 32

Change the width of Column D.E,F to 10
Change the Dafault column width to 8
Erase the single line under Revenue

Delete Column A
Make Default formats for numbers: Currency with 0 decimal point

Format the numbers in "Revenue" as Currency with 2 decimal points

180

BEST COMPANY
INCOME STATEMEINT

Year Znding Apris April dpril
128- 198¢% 1986
Revenue 8300 9876 8765
Ccsts of Goods Sold
Materilals 562 713 71
Salaries 13 104 831
Fringe Benefits 653 368 430
Others 281 72 419
General and idminstrative Expense
Compensation: Offics 463 984 495
Compensation: Sales 575 665 710
Fringe Benefits 580 57 759
Advertising and Promotio 794 199 362
Depreciation 91 37 49
Miscellaneous 53 740 162
Total Operating Expenses 4095 4893 4288

NET INCOME 4205 1983 4477

181

Tasks on Cost

1 Delete Row 6, an empty Row.

(3%

Make Default Format for numbers: currency with O decimal point

3 Copy Column Headings (C3..E4) to bottom of spreadsheet

4 Format the numbers in Column E as percentage with one decimal point
5 Change the default column width to 15

6 Change the width of column C&D to 12

7 Insert a row Before "Total Assets" (Row 23)

8 Erase the numbers in the row "Investments" (Row 19)

9 Center the Column Headings (C3..E4)

10 Make Default Label Justification: Center

CC37T S5a%IR SUPERMARKET
CCMPARATIVE BALANCZI SHEET

Current aissets:

Cash

Marketable Securities
ccounts Receivable: Trade

C“uqts Receivaple: Other
ventories

re palq Expenses

ther Current Assets

[

O'\Jrl.u,u

Total Current Assets
Long-term Assets:

Property, Plant & Equiment

Investments

Total Long-term Assets

TCTAL ASSETS

182

‘2ar Of Year o2
382 19467
9530.0 30385
10163.0 2302
7648.0 EEREE
7538.0 PNEHR
6122.0 23,
13337.0 SDAR I
1050.0 2233
58388.0 52959
17753.0 12983
4089.0 2399,

21842.0 24082,

80230.0 77041,

O DD LW W O

O

[@ IS

-0.27 -
-0.73

-0.36

-0.04

BIBLIOGRAPHY

183

184

BIBLIOGRAPHY

Allen, R.B. and Scerbo, M.W. (1983). “Details of command-language keystrokes.”
ACM Transactions on Office Information Systems 1: 159-178.

Allport, D.A. (1980). Patterns and actions: cognitive mechanisms are content specific.
Cognitive psvchology: new directions. London, Rouledge & Kegan Paul. 26-64.

Anderson, J.R. (1983). The architecture of cognition. Mass., Harvard University Press.

Anderson, J.R. and Jeffries, R. (1985). “Novice LISP errors: undetected losses of
information from working memory.” Hwnan-computer Interaction 1(1): 107-131.

Barnard, P.,Wilson, M., & Maclean, A. (1987).
activity: towards an expert system design aid. In J. M. Carroll & P. P. Tanner (Ed.),

CHI'S87 Human Factors in Computing Systems, New York: ACM Press.

Barnard, P.J. (1987)._Cognitive resources and the learning of human-computer dialogs.
Interfacing thought. Cambridge, Bradford Book, MIT Press.

Bellott, V. (1987). Implications of Current Design Practice for the Use of HCI
Techniques. People and computers TV. Proceedings of the Fourth Conference of the
BCS HCI Specialist Group. University of Manchester, 5-9 September 1988.
Cambridge, Cambridge University Press. 46-61.

Bertino, E. (1985). “Design issues in interactive user interfaces.” Interfaces in
Computing 3: 37-53.

Black, J.B., Kay, D.S., et al. (1987). Goal and plan knowledge representations: from
stories to text editors and programs. Interfacing thought. Cambridge, Bradford Book,
MIT Press.

Booth, P. (1989). An introduction to human-computer interaction. Hillsdale, Lawrence
Erlbaum Associates.

Bower, G.H., Clark, M.C., et al. (1969). “Hierarchical retrieval schemes in recall of
categorized word lists.” Journal of Verbal Learning and Verbal Behavior 9: 323-343.

Brown, P.S. and Gould, J.D. (1987). “An experimental study of people creating
spreadsheets.” ACM T. ransactions on Office Information Systems 5(3): 258-272.

Campbell, R.L. (1990). Developmental scenario analysis of smalltalk programming.
CHI'90 Human Factors in Computing Systems, Seattle, Washigton, ACM Press.

Card, S.K., Moran, T.P., et al. (1980). “Computer text-editing: an information-
processing analysis of a routine cognitive skill.” Cognitive Psychology 12: 32-74.

185

Card, S.K., Moran, T.P., et al. (1980). “The Keystroke-level model for user
performance time with interactive systems.” Communications of the ACM 23: 396-

410.

Card, S.K., Moran, T.P., et al. (1983). The psychology of human-computer interaction.
Hillsdale, NJ, Lawrence Erlbaum Associates, Inc.

Carroll, J.M. (1990). Infinit tail and emulation in an ontologically minimiz
CHI'90 Human Factors in Computing Systems, Seattle, Washigton, ACM Press.

Carroll, J.M. and Campbell, R.L. (1986). “Softening up hard science: reply to Newell
and Card.” Human-computer Interaction 2: 227-250.

Cornsweet, T.N. (1970). Visual Perception. New York, Academic Press.

Cypher, A. (1986). The structure of users' activities. User centered system design:
new perspectives on human-computer interaction. Hillsdale, NJ, Erlbaum Associates.

Dertouzos, M.L. (1990). Redefining tomorrow's user interface. CHI'90 Human Factors
in Computing Systems, Seattle, Washigton, ACM Press.

Ditlea, S. (1987). Spreadsheets can be hazardous to your health. Personal Computing.
62-67.

Elkerton, J., & Palmiter, S. L. (1991). Designing help using a GOMS model: an
information retreival evaluation. Human Factors, 33(2), 185-204.

Filkes, R.E. (1982). “A commitment-based framework for describing co-operative
work.” Cognitive science 6: 331-347.

Fitts, P.M. (1964). Perceptual-motor skill learning. Categories of human leamning.
New York, Academic Press.

Fitts, P.M. and Posner, M.L. (1967). Human Performance. Belmont, CA, Brooks/Cole
Publishing.

Fleishman, E.A. and Quaintance, M.K. (1984). Taxonomies of Human Performance.
Orlando, Florida, Academic Press.

Fountain, A.J. and Norman, M.A. (1985). Modelling user behavior with formal
grammar. People and computers: Designing the interface, Proceedings of the
Conference of the BCS HCI Specialist Group, University of East Anglia, 17-20
September 1985. Cambridge, Cambridge University Press. 3-12.

Gentner, D.R. and Grudin, J. (1990). Why good engineers (sometimes) create bad
interfaces. CHI'90 Human Factors in Computing Systems, Seattle, Washigton, ACM

Press.

186

Goel, V., & Pirolli, P. (1989). Motivating the notion of generic design within
information-processing theory: the design problem space. Al Megazine, 2, 18-36.

Goodstein, L., Andersen, H., et al. (1986). Introduction. Tasks, Errors, and Mental
Models. London, Taylor & Francis.

Grudin, J. (1990). T : istori inui
design. CHI'90 Human Factors in Computing Systems, Seattle, Washigton, ACM

Press.

Holland, J.H. (1986). “A mathematical framework for studying learning in classifier
systems.” Physica 22D: 307-317.

Hoppe, H.U. (1988). Task-oriented parsing - a diagnostic method to be used by
adaptive systems. CHI'88 Human Factors in Computing Systems, Washigton D. C.,
ACM Press.

Hutchins, E.L., Hollan, J.D., et al. (1986). Direct manipulation interfaces. User
Centered System Design: New Perspectives on Human-Computer Interaction.
Hillsdale, NJ, Lawrence Erlbaum Associates, Inc.

John, B.E. (1988). Contributions to engineering models of human-computer interaction.
Phd thesis, Carnegie Mellon University.

John, B.E. (1990). ion
ion of dynamic visual and i information. CHI'90 Human Factors in

Computing Systems, Seattle, Washigton, ACM Press.

Johnson, P. (1985). Toward a task model of messaging: an example of the application
of TAKD to user interface design. S igni i

i n v
Anglia, 17-20 September 1985. Cambridge, Cambridge University Press. 46-61.

Johnson, P., Johnson, H., et al. (1988). Task-related knowledge structures: analysis,

modelling and application. People and computers IV, Proceedings of the Fourth

nf f th i iv -
September 1988. Cambridge, Cambridge University Press. 46-61.

Kasprzyk, D.M., Drury, C.G., et al. (1979). “Human Behaviour and performance in
calculator use with Algebraic and Reverse Polish Notation.” Ergonomics 22(9): 1011-

1019.

Kelley, H.H. (1973). “The processes of causal attribution.” American Psychology
28(2): 107-128.

Kieras, D.E. (1988). Towards a practical GOMS model methodology for user interface
design. Handbook of Human-Computer Interaction. North-Holland, Elsevier Science

Publishers B. V. 905-928.

187

Kieras, D.E. and Bovair, S. (1986). “The acquisition of procedures from text: a
production-system analysis of transfer of training.” Journal of Memory and Learning

25:507-524.

Kieras, D.E. and Polson, P. (1985). “An approach to the formal analysis of user
complexity.” International Journal of Man-Machine Studies 22(4): 365-394.

Knowles, C. (1987). Can Cognitive Complexity Theory (CCT) produce an adequate
measure of system usability. People and computers IV. Proceedings of the Fourth
Conference of the BCS HCI Specialist Group. University of Manchester, 5-9
September 1988. Cambridge, Cambridge University Press. 46-61.

Laird, J. E..Newell, A., & Rosenbloom, P. S. (1987). Soar: An Architecture for general
intelligence. Artificial Intelligence, 33, 1-64.

Landauer, T.K. (1987). Relations between cognitive psychology and computer system
design. Interfacing thought. Cambridge, Bradford Book, MIT Press.

Landauer, T.K. (1988). Research methods in human-computer interaction. Handbook

of Human-Computer Interaction. North-Holland, Elsevier Science Publishers B. V.
905-928.

Lerch, F.J. (1988). Computerized Financial Planning: discovering cognitve difficulties
in model building. PhD thesis, University of Michigan.

Lewis, C.H. (1988). “How and why to learn why: analysis-based generalization of
procedures.” Cognitive Science 12: 211-256.

Lewis, C.H. (1990). “A research agenda for the nineties in human-computer
interaction.” Human-Computer Interaction 5: 125-143.

Liebelt, L.S., McDonald, J.E., et al. (1982). The effect of organization on learning menu
access. Human factors society - 26th annual Meeting, 1982,

Lohse, J. (1991). A_Cognitive Model for the Perception and Understanding of Graphs.
In S. P. Robertson,G. M. Olson, & J. S. Olson (Ed.), CHI'0 Human Factors in
Computing Systems, New Orleans, Louisiana: ACM Press.

Mayes, T.J., Draper, S.W., et al. (1987). Information flow in a user interface: the effect
of experience and context on the recall of MacWrite screens. People and computers

IV. Proceedings of the Fourth Conference of the BCS HCI Specialist Group.
iversi 5- 1988. Cambridge, Cambridge University

Press. 46-61.

Meister, D. (1976). Behavioral foundations of system development. New York, John
Wiley & Sons.

Miller, L.A. (1956). “The magical number seven plus or minus two: Some limits on
our capacity for processing information.” Psychological Review 63: 81-97.

188

Moran, T.P. (1981). “The Command Language Grammar: a representation for the
user interface of interactive computer systems.” /nternational Journal of Man-

Machine Studies 15: 3-50.

Moran, T.P. (1983). Getting into 3 system: External-internal task mapping analysis.
CHI'83 Human Factors in Computing Systems, Boston, North-Holland.

Moran, T.P. (1986). Analytical performance models: a contribution to a panel
discussion. Human factors in computer systems-I11, Boston, Elsevier.

Neves, D.M. and Anderson, J.R. (1981). Knowledge compilation: Mechanisms for the
automation of cognitive skills. Wﬂﬂﬂjﬁﬂﬂﬂﬂn Hillsdale, NJ,
Lawrence Erlbaum.

Newell, A. and Simon, H.A. (1972). Human Problem lving. Englewood Cliffs, N.J.,
Prentice-Hall.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law

of practice. In J. R. Anderson (Eds.), itive Skills and their Acquisition Hillsdale,

New Jersey: Lawrence Erlbaum Associates.

Nilsen, E. L. (1991). Perceptual-motor control in human-computer interaction. PhD
thesis, The University of Michigan.

Norman, D.A. (1986). Cognitive engineering. User centered system design: new

perspectives on human-computer interaction. Hillsdale, NJ, Erlbaum Associates.

Norman, D.A. (1987). Cognitive engineering, cognitive science. Interfacing thought.
Cambridge, Bradford Book, MIT Press.

Olson, J.R. and Nilsen, E. (1988). “Analysis of the cognition involved in spreadsheet
software interaction.” Human Computer Interaction 3(4): 309-350.

Olson, J.R. and Olson, G.M. (1990). “The growth of cognitive modeling in human-
computer interaction since GOMS.” Human Computer Interaction 5: 221-265.

Payne, S.J. and Green, T.R.G. (1986). “Task action grammars: a model of the mental
representation of task languages.” Human Computer Interaction 2: 93-133.

Polson, P. (1987). A quantitative theory of human-computer interaction. Interfacing
thought. Cambridge, Bradford Book, MIT Press.

Polson, P.G. and Lewis, C.H. (1990). “Theory-based design for easily learned
interfaces.” Human Computer Interaction 5: 191-220.

Rasmussen, J. (1976). Outlines of a hybrid model of the process operator. Monitoring
Behavior and Supervisory Control. New York, Plenum Press.

189

Rasmussen, J. (1980). The human as a system component. Human_interaction with
Computers. London, Academic Press.

Rasmussen, J. (1986). On information processing and Human-Machine Interaction: an

approach to cognitive engineering. Amsterdam, Elsevier.

Reisner, P. (1987). Discussion: HCI, what is it and what research is needed?
Interfacing thought. Cambridge, Bradford Book, MIT Press.

Reisner, R. (1981). “Formal grammar and human factors design of an interactive
graphics system.” JEEE Transaction on Software Engineering SE-7(2): 229-140.

Reisner, R. (1984). Formal grammar as a tool for analyzing ease of use: some

fundamental concepts. Human Factors in Computer Systems. New Jersey, Ablex Pub.
Corp.

Reitman, W. R. (1965). Cognition and thought. New York: Wiley.

Roberts, T.L. and Moran, T.P. (1982). Evaluation of text editors. Human Factors in
Compute Systems, Gaithersburg, ACM Press.

Sanderson, P.M. and Harwood, K. (1986). The skills, rules and knowledge
classification: a discussion of its emergence and nature. Tasks, errors. and mental
models. London, Taylor & Francis.

Schank, R.S. and Abelson, R.P. (1977). i Plan 1s. and Under ing.

Hillsdale, N.J., Lawrence Dribaum & Assoc.

Schmidt, R.A. (1982). Motor control and learning — a behavior em hasis. champaign,
Illinois, Human Kinetics Publishers.

Sekular, R. and Blake, R. (1985). Perception. New York, Knopf.

Shackel, B. (1985). “Ergonomics in information technology in Europe - 2 review.”
Behaviour and Information Technology 4(4): 263-287.

Shapiro, A.D. (1987). Structured induction in expert systems. New York, Addison-
Wesley.

Shiffrin, R.M. and Dumais, S.T. (1981). The development of automatism. Cognitive
Skills and Their Acquisition. Hillsdale, New Jersey, Lawrence Erlbaum Associates,
Publishers.

Simon, T. (1987). Analyzing the scope of cognitive models in human-computer
interaction: a trade-off approach. People and com IV. Pr ings of the Fourth

nference of the BCS HCI Specialist Group. University of Manchester, -
September 1988. Cambridge, Cambridge University Press. 46-61.

190

Simon, T. and Young, R.M. (1988). GOMS meets STRIPS: the integration of planning
with skilled procedure execution in human-computer interaction. People and computers
IV. Proceedings of the Fourth Conference of the BCS HCI Specialist Group.
University of Manchester. 5-9 September 1988. Cambridge, Cambridge University

Press. 46-61.

Slobin, D.L (1979). Psycholinguistics. Glenview, Illinois, Scott, Foresman and
Company.

Smelcer, J.B. (1989). Understanding user €rrors in database query. PhD thesis,
University of Michigan.

Straub, D.W. and Wetherbe, J.C. (1989). “Information technologies for the 1990s: an
organizational impact perspective.” Communications of the ACM 32(11): 1328-1339.

Sutcliffe, A. (1987). Some experience in integrating specification of human computer
interaction within a structured system development. People and computers IV,
i he F nferen iglist Qr: iversity of

Manchester., 5-9 September 1988. Cambridge, Cambridge University Press. 46-61.

Swets, J.A. (1964). Signal detection and recognition by human observers. New York,
Wiley.

Tversky, A. and Kahneman, D. (1974). “Judgement under uncertainty: Heuristics and
biases.” Science : 1123-1124.

Waemn, Y. (1989). Cognitive aspects of computer supported tasks. Essex, John Wiley

& Sons.

Waugh, N.C. and Norman, D.A. (1965). “Primary memory.” Psychological Review 72:
89-104.

Wilson, M.D., Barnard, P.J., et al. (1985). Analysing the learning of command

sequences in a menu system. People and computers: Designing the interface.

Proceedings of the Conference of the BCS HCI Specialist Group. University of East
i - . Cambridge, Cambridge University Press. 63-75.

Wilson, M.D., Barnard, P.J., et al. (1988). Knowledge-based analysis for human-
computer systems. Working with Computers: Theorv versus Qutcome. London,

Academic Press. Gaines, B.R., ed. 47-87.

Young, M.R. and Simon, P. (1987). Planning in the context of human-computer
interaction. n rs IV in fthe F nfer
BCS HCI Specialist Group. University of Manchester, 5-9 September 1988.

Cambridge, Cambridge University Press. 363-370.

Young, RM. (1981). “The machine inside the machine, users' models of pocket
calculators.” International Journal of Man-Machine Studies 15: 51-85.

191

Young, R.M. and Whittington, J. (1990). Usi wl i

conceptual errors in text-editor usage. CHI'90 Human Factors in Computing Systems,
Seattle, Washigton, ACM Press.

10.

11.

13.

14.

15.

16.

Cognitive Science and Machine Intelligence Laboratory
The University of Michigan
Ann Arbor, Michigan

Technical Report Series

Combining Prototypes: A Modification Model. Edward E. Smith, Daniel N. Osherson. Lance
J. Rips and Margaret Keane. January 1987.

Soar: An Architecture for General Intelligence. John E. Laird, Allen Newell and Paul S.
Rosenbloom. January 1987.

Some Origins of Belief. Daniel. N. Osherson. Edward E. Smith and Eldar B. Shafir. January
1987.

Adaptive Information Retrieval: Machine Learning in Associative Networks. Richard K.
Belew. January 1987.

Activation and Metacognition of Inaccessible Stored Information: Potential Bases for
Incubation Effects in Problem Solving. Ilan Yaniv and David E. Meyer. January 1987. |

Structure and Process in Semantic Memory: New Evidence Based on Speed Accuracy
Decomposition. John Kounios, Allen Osman, and David E. Meyer. April 1987

New Concepts in Tele-Autonomous Systems and Tele-Autonomous Systems: Methods and
Architectures for Intermingling Autonomous and Telerobotic Technology. Lynn Conway,
Richard Volz and Michael Walker. April 1987.

Classifier Systems and Genetic Algorithms. L.B. Booker. D.E. Goldberg and J.H. Holland.
April 1987.

LFP: A Logic for Linguistic Descriptons and An Analysis of its Complexity. William C.
Rounds. May 1987.

Fluid Concepts and Creative Analogies: A Theory and Its Computer Implementation. Douglas
R. Hofstadter. Melanie Mitchell, and Robert M. French. May 1987.

A Qualitative Approach for Recovering Relatve Depths in Dynamic Scenes. Susan M. Haynes
and Ramesh Jain. June 1987

Mental Models in Human-Computer Interaction: Research Issues About What the User of
Software Knows. John M. Carroll, Judith Reitman Olson, and Nancy Anderson. June 1987.

Extracting Expertise from Experts: Methods for Knowledge Acquisition. Judith Reitman
Olson and Henry Rueter. June 1987.

An Advantage Model of Choice. Eldar B. Shafir, Daniel N. Osherson, and Edward E. Smith.
September 1987.

Can Principles of Cognition Lower the Barriers to Programming? Clayton Lewis and Gary M.
Olson. September 1987.

Management Use of Computer Technology: A Comparison of Two Theoretical Models.
Richard P. Bagozzi, Fred D. Davis. and Paul R. Warshaw. March 1988.

17.

18.
19.

33.

34.

35.

Analysis of the Cognition Involved in Spreadsheet Software Interaction. Judith Reitman Olson,
Erik Nilsen. April 1988.

Intellectual Development. Gary M. Olson. June 1988.

Induction and the Acquisition of English Auxiliaries: The Effects of Differentially Enriched
Input. Marilyn Shatz, Erika Hoff-Ginsberg, Douglas Maclver. June 1988.

Modern Mental Chronometry. David E. Meyer, Allen M. Osman. David E. Irwin, Steven
Yantis. October 1988.

Expertise and the Ability to Explain Audit Findings. Robert Libby, David M. Frederick.
February 1989.

Supporting Collaboration with Advanced Multimedia Electronic Mail: The NSF EXPRES
Project. Gary M. Olson, Daniel E. Atkins. February, 1989.

Category Based Induction. Daniel N. Osherson, Edward E. Smith. Ommond Wilkie, Alejandro
Lopez, Eldar Shafir. March 1989.

Computer Aided Group Judgment: A Study of Group Decision Support Systems
Effectiveness. Yue Kee Wong. August 1989.

CSCW: Evolution and Status of Computer Supported Cooperative Work. Paul Cornell,
Robert Luchetti, Lisbeth Mack, Gary M. Olson. August 1989.

The Growth of Cognitive Modeling in Human Computer Interaction Since GOMS. Judith R.
Olson, Gary M. Olson. November 1989.

Dimensional Overlap--Cognitive Basis for Stimulus-Response Compatibility: A Model and
Taxonomy. Sylvan Korblum, Thierry Hasbroucq, Allen Osman. December 1989.

Probabilistic Forecasts of Stock Prices and Earnings: The Hazards of Nascent Expertise. J.
Frank Yates, Linda S. McDaniel, Eric S. Brown. December 1989.

Heuristics of Reasoning and Analogy in Children’s Visual Perspective Taking. Ilan Yaniy,
Marilyn Shatz. February 1990.

Constraints on the Acquisition of English Modals. Marilyn Shatz. Sharon Wilcox. February
1990.

Patterns of Language Learning Related Behaviors: Evidence for Self-help in Acquiring
Grammar. Marilyn Shatz, Karen Ebeling. February 1990.

User -Centered Design of Collaboration Technology. Gary M. Olson. Judith S. Olson. April
1990.

Designing Flexible Facilities for the Support of Collaboration. Gary M. Olson, Judith S. Olson,
Lola J. Killey, Lisbeth A. Mack, Paul Cornell, Robert Luchetti. September 1990.

Techniques for Representing Expert Knowledge. Judith Reitman Olson, Kevin Biosi.
November 1990.

Case for Rules in Reasoning. Edward E. Smith, Christopher Langston. Richard E. Nisbett.
March 1991.

